Skip to main content
Log in

Solid-phase microextraction and gas chromatography–mass spectrometry for analysis of phenols and nitrophenols in rainwater, as their t-butyldimethylsilyl derivatives

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry has been used for analysis of four phenols and sixteen nitrophenols in rainwater samples. Analytes were extracted from the water in the immersion mode and derivatised for 5 min during direct desorption in the GC injector. Before desorption, 2 μL N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MDBSTFA) was introduced into the injector, which was maintained at 280 °C. Different conditions affecting extraction efficiency were studied, including temperature, type of microextraction fibre, and effect of pH and ionic strength. Five different fibre coatings were tested: 85-μm polyacrylate (PA), 100-μm polydimethylsiloxane (PDMS), 65-μm Carbowax–divinylbenzene (CW–DVB), 75-μm Carboxen–polydimethylsiloxane (CAR–PDMS), and 65-μm polydimethylsiloxane–divinylbenzene (PDMS–DVB). The best conditions were use of PA fibres for 40 min at ambient temperature (75 g NaCl per 100 mL, pH 3.0). MDBSTFA was used as derivatising agent because it enables analysis of phenols derivatives with high confidence in identification, because in electron-impact mode TBDMS–phenol derivatives produce the specific M–57 ion. Quantification was achieved by using 4-nitrophenol-d4, at 1 mg L−1, as internal standard. Linearity was good, with correlation coefficients in the range 0.9888 (o-cresol) to 0.9987 (dinitro-o-cresol, DNOC). Detection limits varied between 0.208 and 99.3 μg L−1 and quantification limits between 0.693 and 331 μg L−1. Uncertainties varied between 8.7% (phenol) and 17.9% (4-methyl-2-nitrophenol). The method was successfully applied to the analysis of rainwater collected at urban and rural sites in Alsace (East of France). Because of derivatisation in the injector and the associated high temperature, the lifetime of the fibre is severely reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allen SK, Allen CW (1997) Bull Environ Contam Toxicol 59:702–707

    Article  CAS  Google Scholar 

  2. Shea PJ, Weber JB, Overcash MR (1983) Res Rev 87:1–41

    CAS  Google Scholar 

  3. Shäfer WE, Schönherr J (1985) Ecotox Environ Safety 10:239–252

    Article  Google Scholar 

  4. Rippen G, Zietz E, Frank R, Knacker T, Klöpffer W (1987) Environ Technol Lett 8:475–482

    Article  CAS  Google Scholar 

  5. Trautner F, Reischl A, Hutzinger O (1989) UWSF-Z Umveltchem Ökotox 3:10–15

    Google Scholar 

  6. Nojima K, Kawagushi A, Ohya T, Kanno S, Hirobe M (1983) Chem Pharm Bull 31:1047–1051

    CAS  Google Scholar 

  7. Tremp J, Mattrel P, Fingler S, Giger W (1993) Water Air Soil Poll 68:113–123

    Article  CAS  Google Scholar 

  8. Nojima K, Fukaya K, Fukui S, Kanno S (1975) Chemosphere 4:77–82

    Article  CAS  Google Scholar 

  9. Nojima K, Fukaya S, Fukui S, Kanno S, Nishiyama S, Wada Y (1976) Chemosphere 5:25–30

    Article  CAS  Google Scholar 

  10. Nojima K, Kanno S (1977) Chemosphere 6:371–376

    Article  CAS  Google Scholar 

  11. Atkinson R, Carter WPL, Darnal KR, Winer AM, Pitts JN Jr (1980) Int J Chem Kinet 12:779–836

    Article  CAS  Google Scholar 

  12. Grosjean D (1984) Atmos Environ 18:1641–1652

    Article  CAS  Google Scholar 

  13. Leone JA, Seinfield JH (1985) Atmos Environ 19:437–464

    Article  CAS  Google Scholar 

  14. Kishk FM, El-Essawi T, Abdel-Ghafar S, Abou-Donia MB (1976) J Agric Food Chem 24:305–307

    Article  CAS  Google Scholar 

  15. Laplanche A, Bouvet M, Venien F, Martin G, Charolles A (1981) Water Res 15:599–607

    Article  CAS  Google Scholar 

  16. Leuenberger CH, Czuczwa J, Tremp J, Giger W (1988) Chemosphere 17:511–515

    Article  CAS  Google Scholar 

  17. Kawamura K, Kaplan IR (1983) Environ Sci Technol 17:497–501

    Article  CAS  Google Scholar 

  18. Leuenberger C, Ligocki MP, Pankow JF (1985) Environ Sci Technol 19:1053–1058

    Article  CAS  Google Scholar 

  19. Richartz H, Reischl A, Trautner F, Hutzinger O (1990) Atmos Environ 24A:3067–3071

    CAS  Google Scholar 

  20. Schwartzenbach RP, Stirli R, Folsom BR, Zeyer (1988) J Environ Sci Technol 22:83–92

    Article  Google Scholar 

  21. Fogg GE (1946) Appl Biol 35:315–330

    Article  Google Scholar 

  22. Hinkel M, Reischl KW, Schramm F, Trautner M, Reissinger M, Hutzinger O (1989) Chemosphere 18:2433–2439

    CAS  Google Scholar 

  23. Thompson TS, Treble RG (1995) Chemosphere 31:4387–4392

    Article  CAS  Google Scholar 

  24. Natangelo M, Mangiapan S, Bagnati R, Benfenati E, Fanelli R (1999) Chemosphere 38:1495–1503

    Article  CAS  Google Scholar 

  25. Heberer Th, Stan HJ (1997) Anal Chim Acta 341:21–34

    Article  CAS  Google Scholar 

  26. Schoene K, Bruckert HJ, Steinhanses J, Klinig A (1994) Fresenius Z Anal Chem 348:348–351

    Google Scholar 

  27. Wissiack R, Rosenberg E, Grasserbauer MJ (2000) Chromatogr A 896:159–171

    Article  CAS  Google Scholar 

  28. Rodríguez I, Llompart MP, Cela RJ (2000) Chromatogr A 885:291–304

    Article  Google Scholar 

  29. Bielicka-Daszkiewicz K, Voelkel A, Szejner M, Osypiuk J (2006) Chemosphere 62:890–898

    Article  CAS  Google Scholar 

  30. Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley–VCH, New York

    Google Scholar 

  31. Scheppers-Wercinski SA (1999) Solid phase microextraction: a practical guide. Marcel and Dekker, New York

    Google Scholar 

  32. Pawliszyn J (1999) Applications of solid phase microextraction. (R.S.C. chromatography monographs). Royal Society of Chemistry, London

    Google Scholar 

  33. Buchholz KD, Pawliszyn J (1994) Anal Chem 66:160–167

    Article  CAS  Google Scholar 

  34. Bartak P, Cap L (1997) J Chromatogr A 767:171–175

    Article  CAS  Google Scholar 

  35. Lee MR, Yeh YC, Hsiang WS, Hwang BH (1998) J Chromatogr A 806:317–324

    Article  CAS  Google Scholar 

  36. Moeder M, Schrader S, Franck U, Popp P (1997) Fresenius J Anal Chem 357:326–331

    Article  Google Scholar 

  37. Moeder M, Schrader S, Winkler M, Popp P (2000) J Chromatogr A 873:95–106

    Article  CAS  Google Scholar 

  38. Llompart M, Blanco B, Cela R (2000) J Microcol Sep 12:25–30

    Article  CAS  Google Scholar 

  39. Murad I, Helaleh H, Fujii S, Korenaga T (2001) Talanta 54:1039–1047

    Article  Google Scholar 

  40. Wennrich L, Popp P, Moder M (2000) Anal Chem 72:546–551

    Article  CAS  Google Scholar 

  41. Morville S, Scheyer A, Mirabel P, Millet M (2004) J Environ Monit 6:963–966

    Article  CAS  Google Scholar 

  42. Lord H, Pawliszyn J (2000) J Chromatogr A 885:153–193

    Article  CAS  Google Scholar 

  43. Llompart M, Lourido M, Landın P, Garcıa-Jares C, Cela R (2002) J Chromatogr A 963:137–148

    Article  CAS  Google Scholar 

  44. Furong Z, Xiujuan L, Zhaorui Z (2005) Anal Chim Acta 538:63–70

    Article  CAS  Google Scholar 

  45. Mejıas RC, Marın RN, Garcıa Moreno MV (2003) J Chromatogr A 995:11–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors want to thank the “Région Alsace”, “the DRIRE-Alsace”, the “PNCA (Programme National de Chimie Atmosphérique)”, and the French Ministry of Ecology and Sustainable Development (through the PRIMEQUAL 2-PREDIT program) for financial support. The “IAEA” and the AUF (“Agence Universtaire de la Francophonie”) are also gratefully acknowledged for, respectively, the post-doctoral grant to Dr Farouk Jaber and the Ph.D. thesis grant to Jamal Al Chami.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Millet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaber, F., Schummer, C., Al Chami, J. et al. Solid-phase microextraction and gas chromatography–mass spectrometry for analysis of phenols and nitrophenols in rainwater, as their t-butyldimethylsilyl derivatives. Anal Bioanal Chem 387, 2527–2535 (2007). https://doi.org/10.1007/s00216-006-1115-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1115-9

Keywords

Navigation