Skip to main content
Log in

Influence of structural factors on the enhanced activity of moxifloxacin: a fluorescence and EPR spectroscopic study

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Partition coefficients of moxifloxacin in liposomes of dimyristoyl-L-α-phosphatidylcholine or dimyristoyl-L-α-phosphatidylglycerol and water were determined by spectrophotometry and fluorimetry. The K p values obtained were larger than those reported for most of the other fluoroquinolones, a consequence of the structural changes observed in the molecule of moxifloxacin, which in turn change its acid/base properties. Introduction of a methoxy group at position 8 and a diazabicyclonyl ring at position 7 in the basic fluoroquinolone structure alters the charge distribution at the physiological pH of 7.4, and these changes seem to be responsible for its improved antibacterial potency and broader spectrum of activity. Location studies have also been performed using fluorescence and electron paramagnetic resonance (EPR) spectroscopies. The results show that moxifloxacin must be located near the phospholipid headgroups, similar to other fluoroquinolones, but contributions from a hydrophobic component were also detected. These results suggest that the enhanced activity of this drug may be related to a more facilitated entrance into the bacterial cell, perhaps including a mediator step involving electrostatic interaction with a hydrophobic component; this step then controls the extent or orientation of insertion and improves the electrostatic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2a, b
Fig. 3
Fig. 4a, b
Fig. 5a, b

Similar content being viewed by others

References

  1. Quintiliani R, Owens RC, Grant EM (1999) Infect Dis Clin Pract 8:S28–S41

    Article  Google Scholar 

  2. Blondeau JM (1999) Clin Ther 21:3–40

    Article  CAS  Google Scholar 

  3. Bergan T (1998) Pharmacokinetics of the fluoroquinolones. Academic, San Diego, CA

  4. NCCLS (2000) Approved Standard M7–A5, 5th edn. National Committee for Clinical Laboratory Standards, Wayne, PA

  5. Appelbaum PC, Hunter PA (2000) Int J Antimicrob Agents 16:5–15

    Article  CAS  Google Scholar 

  6. Eick S, Schmitt A, Sachse S, Schmidt KH, Pfister W (2004) J Antimicrob Chemother 54:553–556

    Article  CAS  Google Scholar 

  7. Mason RP, Rhodes DG, Herbette LG (1991) J Med Chem 34:869–877

    Article  CAS  Google Scholar 

  8. Efthymiopoulos C (1997) J Antimicrob Chemother 40:35–43

    Article  CAS  Google Scholar 

  9. Papahadjopoulos D, Jacobson K, Poste G, Shepherd G (1975) Biochim Biophys Acta 394:504–519

    Article  CAS  Google Scholar 

  10. Seelig A, Allegrini PR, Seelig J (1988) Biochim Biophys Acta 939:267–276

    Article  CAS  Google Scholar 

  11. Findlay JBC, Evans WH (1987) Biological membranes: a practical approach. IRL, Oxford

  12. Strancar J, Sentjurc M, Schara M (2000) J Magn Reson 142:254–265

    Article  CAS  Google Scholar 

  13. Jeschke G (2004) Electron paramagnetic resonance spectroscopy. In: Steed J, Atwood J (eds) Encyclopedia of supramolecular chemistry. Taylor & Francis, New York, 1:520

  14. Rodrigues C, Gameiro P, Reis S, Lima J, de Castro B (2001) Biophys Chem 94:97–106

    Article  CAS  Google Scholar 

  15. Montero MT, Hernandez-Borrell J, Keough KMW (1998) Langmuir 14:2451–2454

    Article  CAS  Google Scholar 

  16. Hernandez-Borrell J, Montero MT (2003) Int J Pharm 252:149–157

    Article  CAS  Google Scholar 

  17. Budai M, Szabo Z, Zimmer A, Szogyi M, Grof P (2004) Int J Pharm 279:67–79

    Article  CAS  Google Scholar 

  18. Savitzky A, Golay MJE (1964) Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  19. Fiske CH, Subbarom Y (1925) J Biol Chem 66:375–400

    CAS  Google Scholar 

  20. Gran G (1952) Analyst 77:661–671

    Article  CAS  Google Scholar 

  21. Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739–1753

    Article  CAS  Google Scholar 

  22. Vogel AI (1948) A text book of quantitative analysis: theory and practice. Longmans and Green, London

    Google Scholar 

  23. Decastro B, Gameiro P, Lima JLFC (1993) Anal Chim Acta 281:53–62

    Article  CAS  Google Scholar 

  24. de Castro B, Gameiro P, Guimaraes C, Lima JLFC, Reis S (1998) J Pharm Sci 87:356–359

    Article  Google Scholar 

  25. Rodrigues C, Gameiro P, Reis S, Lima JLFC, de Castro B (2002) Langmuir 18:10231–10236

    Article  CAS  Google Scholar 

  26. Langlois MH, Montagut M, Dubost JP, Grellet J, Saux MC (2005) J Pharm Biomed Anal 37:389–393

    Article  CAS  Google Scholar 

  27. Braibanti A, Ostacoli G, Paoletl P, Petit LD, Sammartano S (1987) Pure Appl Chem 59:1721–1728

    CAS  Google Scholar 

  28. Kiss T, Sovago I, Gergely A (1991) Pure Appl Chem 63:597–638

    Google Scholar 

  29. Ross DL, Riley CM (1994) J Pharm Biomed Anal 12:1325–1331

    Article  CAS  Google Scholar 

  30. Kawai Y, Matsubayashi K, Hakusui H (1996) Chem Pharm Bull (Tokyo) 44:1425–1430

    CAS  Google Scholar 

  31. Meras ID, de la Pena AM, Caceres MIR, Lopez FS (1998) Talanta 45:899–907

    Article  CAS  Google Scholar 

  32. Drakopoulos AI, Ioannou PC (1997) Anal Chim Acta 354:197–204

    Article  CAS  Google Scholar 

  33. Djurdjevic PT, Jelikicstankov M, Stankov D (1995) Anal Chim Acta 300:253–259

    Article  CAS  Google Scholar 

  34. Talsky G, Mayring L, Kreuzer H (1978) Angew Chem Int Edit 17:785–799

    Google Scholar 

  35. Sommer LMH (1989) Analytical absorption spectrophotometry in the visible and ultraviolet: the principles. Elsevier, Amsterdam

    Google Scholar 

  36. Kitamura K, Imayoshi N (1992) Anal Sci 8:497–501

    CAS  Google Scholar 

  37. Kitamura K, Imayoshi N, Goto T, Shiro H, Mano T, Nakai Y (1995) Anal Chim Acta 304:101–106

    Article  CAS  Google Scholar 

  38. Matos C, de Castro B, Gameiro P, Lima JLFC, Reis S (2004) Langmuir 20:369–377

    Article  CAS  Google Scholar 

  39. Ferreira H, Lucio M, Lima JLFC, Matos C, Reis S (2005) J Pharm Sci 94:1277–1287

    Article  CAS  Google Scholar 

  40. Coutinho A, Prieto M (1995) Biophys J 69:2541–2557

    CAS  Google Scholar 

  41. Santos NC, Prieto M, Castanho MARB (2003) BBA—Biomembranes 1612:123–135

  42. Chakraborty H, Roy S, Sarkar M (2005) Chem Phys Lipids 138:20–28

    Article  CAS  Google Scholar 

  43. Lakowicz J (1999) Principles of fluorescence spectroscopy. Plenum, New York

  44. Chalpin DB, Kleinfeld AM (1983) Biochim Biophys Acta 731:465–474

    Article  CAS  Google Scholar 

  45. MoyaQuiles MR, MunozDelgado E, Vidal CJ (1996) Chem Phys Lipids 79:21–28

    Article  CAS  Google Scholar 

  46. Blatt E, Sawyer WH (1985) Biochim Biophys Acta 822:43–62

    CAS  Google Scholar 

  47. Merino-Montero S, Domenech O, Montero MT, Hernandez-Borrell J (2006) Biophys Chem 119:78–83

    Article  CAS  Google Scholar 

  48. Goto M, Sunamoto J (1992) Bull Chem Soc Jpn 65:3331–3334

    Article  CAS  Google Scholar 

  49. Quan DY, Maibach HI (1994) Int J Pharm 104:61–72

    Article  CAS  Google Scholar 

  50. Nagumo A, Sato Y, Suzuki Y (1991) Chem Pharm Bull (Tokyo) 39:3071–3074

    CAS  Google Scholar 

  51. Keith A, Bulfield G, Snipes W (1970) Biophys J 10:618–629

    Article  CAS  Google Scholar 

  52. Marsh D (1981) Electron spin resonance: spin labels. Springer, Berlin Heidelberg New York

  53. Tajima K, Imai Y, Horiuchi T, Koshinuma M, Nakamura A (1996) Langmuir 12:6651–6658

    Article  CAS  Google Scholar 

  54. Coderch L, Fonollosa J, Estelrich J, De La Maza A, Parra JL (2000) J Control Release 68:85–95

    Google Scholar 

  55. Swamy MJ, Marsh D (2001) BBA—Biomembranes 1513:122–130

  56. Merino S, Vazquez JL, Domenech O, Berlanga M, Vinas M, Montero MT, Hernandez-Borrell J (2002) Langmuir 18:3288–3292

    Article  CAS  Google Scholar 

  57. Grancelli A, Morros A, Cabanas ME, Domenech O, Merino S, Vazquez JL, Montero MT, Vinas M, Hernandez-Borrell J (2002) Langmuir 18:9177–9182

    Article  CAS  Google Scholar 

  58. Kaiser RD, London E (1998) Biochemistry 37:8180–8190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Partial financial support for this work was provided by “Fundação para a Ciência e Tecnologia” (FCT, Lisboa) through Project POCI/SAU-FCF/56003/2004. P.N. thanks FCT for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Gameiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neves, P., Leite, A., Rangel, M. et al. Influence of structural factors on the enhanced activity of moxifloxacin: a fluorescence and EPR spectroscopic study. Anal Bioanal Chem 387, 1543–1552 (2007). https://doi.org/10.1007/s00216-006-1009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1009-x

Keywords

Navigation