Skip to main content
Log in

An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube–cross-linked chitosan composite

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple method has been devised for immobilization of acetylcholinesterase (AChE)—covalent bonding to a multiwall carbon nanotube (MWNT)–cross-linked chitosan composite (CMC)—and a sensitive amperometric sensor for rapid detection of acetylthiocholine (ATCl) has been based on this. Fourier-transform infrared spectroscopy proved that the native structure of the immobilized enzyme was preserved on this chemically clean and homogeneous composite film, because of the excellent biocompatibility and non-toxicity of chitosan. Glutaraldehyde was used as cross-linker to covalently bond the AChE, and efficiently prevented leakage of the enzyme from the film. Because of the inherent conductive properties of the MWNT, the immobilized AChE had greater affinity for ATCl and excellent catalytic effect in the hydrolysis of ATCl, with a \(K^{{{\text{app}}}}_{{\text{m}}} \) value of 132 μmol L−1, forming thiocholine, which was then oxidized to produce a detectable and rapid response. Under optimum conditions the amperometric current increased linearly with the increasing concentration of ATCl in the range 2.0–400 μmol L−1, with a detection limit of 0.10 μmol L−1. Fabrication reproducibility of the sensor was good and the stability was acceptable. The sensor is a promising new tool for characterization of enzyme inhibitors and for pesticide analysis.

Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schulze H, Vorlov’a S, Villatte F, Bachmann TT, Schmid RD (2003) Biosens Bioelectron 18:201–209

    Article  PubMed  CAS  Google Scholar 

  2. Suprun E, Evtugyn G, Budnikov H, Ricci F, Moscone D, Palleschi G (2005) Anal Bioanal Chem 383:597–604

    Article  PubMed  CAS  Google Scholar 

  3. Pogacnik L, Franko M (2003) Biosens Bioelectron 18:1–9

    Article  PubMed  CAS  Google Scholar 

  4. Dietz AA, Rubinstein HM, Lubrano T (1973) Clin Chem 19:1309–1313

    PubMed  CAS  Google Scholar 

  5. Dietz AA, Rubinstein HM (1972) Clin Biochem 5:136–138

    Article  PubMed  CAS  Google Scholar 

  6. Ellman GL (1958) Biochem Biophys 74:443–450

    Article  CAS  Google Scholar 

  7. Ellman GL (1959) Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  8. Baeumner AJ (2003) Anal Bioanal Chem 377:434–445

    Article  PubMed  CAS  Google Scholar 

  9. Li C, Wang C, Ma Y, Bao W, Hu S (2005) Anal Bioanal Chem 381:1049–1055

    Article  PubMed  CAS  Google Scholar 

  10. Stein K, Schwedt G (1993) Anal Chim Acta 272:73–81

    Article  CAS  Google Scholar 

  11. Palleschi G, Bernabei M, Cremisini C, Mascini M (1992) Sens Actuators B 7:513–517

    Article  Google Scholar 

  12. Nyamsi-Hendji AM, Jaffrezic-Renault N, Martelet C, Clechet P, Shulga AA, Strikah VI (1993) Anal Chim Acta 281:3–11

    Article  Google Scholar 

  13. Kandimalla VB, Ju HX (2005) Chem-Eur J 12:1074–1080

    Article  Google Scholar 

  14. Bachmann TT, Schmid RD (1999) Anal Chim Acta 401:95–103

    Article  CAS  Google Scholar 

  15. Bernabei M (1991) Anal Lett 24:1317–1331

    CAS  Google Scholar 

  16. Ivanov AN, Evtugyn GA, Gyurcsányi RE, Tóth K, Budnikov HC (2000) Anal Chim Acta 404:55–65

    Article  CAS  Google Scholar 

  17. Pariente F, Rosa CL, Galan F, Hernandez L, Lorenzo E (1996) Biosens Bioelectron 11:1115–1128

    Article  PubMed  CAS  Google Scholar 

  18. Lee HS, Kim YA, Cho YA, Lee YT (2002) Chemosphere 46:571–576

    Article  PubMed  CAS  Google Scholar 

  19. Kindervater R, Kunnecke W, Schmid RD (1990) Anal Chim Acta 234:113–117

    Article  CAS  Google Scholar 

  20. Bucur B, Danet AF, Marty JL (2004) Biosens Bioelectron 20:217–225

    Article  PubMed  CAS  Google Scholar 

  21. Andreescu S, Barthelmebs L, Marty JL (2002) Anal Chim Acta 464:171–180

    Article  CAS  Google Scholar 

  22. Luo XL, Xu JJ, Zhang Q, Yang GJ, Chen HY (2005) Biosens Bioelectron 21:190–196

    Article  PubMed  CAS  Google Scholar 

  23. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136

    Article  PubMed  CAS  Google Scholar 

  24. Sotiropoulou S, Chaniotakis NA (2005) Anal Chim Acta 530:199–204

    Article  CAS  Google Scholar 

  25. Joshi KA, Wang J, Haddon R, Chen W, Mulchandani A (2005) Electroanal 17:54–58

    Article  CAS  Google Scholar 

  26. Qian L, Yang XR (2006) Talanta 68:721–727

    Article  CAS  Google Scholar 

  27. Zhang MG, Smith A, Gorski W (2004) Anal Chem 76:5045–5050

    Article  PubMed  CAS  Google Scholar 

  28. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Electrochem Commun 6:66–70

    Article  CAS  Google Scholar 

  29. Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Anal Chem 74:1993–1997

    Article  PubMed  CAS  Google Scholar 

  30. Wang ZH, Wang YM, Luo GA (2003) Electroanal 15:1129–1133

    Article  Google Scholar 

  31. Luo HX, Shi ZJ, Li NQ, Gu ZN, Zhuang QK (2001) Anal Chem 73:915–920

    Article  PubMed  CAS  Google Scholar 

  32. Wu FH, Zhao GC, Wei XW (2002) Electrochem Commun 4:690–694

    Article  CAS  Google Scholar 

  33. Chen J, Du D, Yan F, Ju HX, Lian HZ (2005) Chem-Eur J 11:1467–1472

    Article  CAS  Google Scholar 

  34. Du D, Ju HX, Zhang XJ, Chen J, Cai J, Chen HY (2005) Biochemistry 44:11539–11545

    Article  PubMed  CAS  Google Scholar 

  35. Wang HS, Ju HX, Chen HY (2002) Anal Chim Acta 461:243–250

    Article  CAS  Google Scholar 

  36. Kepley LJ, Bard AJ (1988) Anal Chem 60:1459–1467

    Article  CAS  Google Scholar 

  37. Dai Z, Yan F, Chen J, Ju HX (2003) Anal Chem 75:5429–5434

    Article  PubMed  CAS  Google Scholar 

  38. Jackson M, Choo LP, Watson PH (1995) Biochem Biophys Acta 1270:1–6

    PubMed  Google Scholar 

  39. Dong S, Luo GA, Feng J, Li QW, Gao H (2001) Electroanal 13:30–33

    Article  CAS  Google Scholar 

  40. Liu GD, Lin YH (2005) Electrochem Commun 7:339–343

    Article  CAS  Google Scholar 

  41. Kamin RA, Willson GS (1980) Anal Chem 52:1198–1205

    Article  CAS  Google Scholar 

  42. Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) Electroanal 17:54–58

    Article  CAS  Google Scholar 

  43. Vakurov A, Simpson CE, Daly CL, Gibson TD, Millner PA (2004) Biosens Bioelectron 20:1118–1125

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Science Foundation of Hubei Province (No. 2006ABA183) the National Natural Science Foundation of China (No. 206 72043) and the Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Central China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, D., Huang, X., Cai, J. et al. An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube–cross-linked chitosan composite. Anal Bioanal Chem 387, 1059–1065 (2007). https://doi.org/10.1007/s00216-006-0972-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0972-6

Keywords

Navigation