Skip to main content

Advertisement

Log in

Non-invasive and non-destructive micro-XRF and micro-Raman analysis of a decorative wallpaper from the beginning of the 19th century

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Non-destructive and non-invasive micro-Raman fibre optic and micro-XRF analyses were performed to study a wallpaper from the beginning of the 19th century. The complementarity of these two non-destructive techniques is shown in this work. The analysed artwork is considered one of the most beautiful wallpapers ever manufactured according to the catalogues and books; it is known as Chasse de Compiègne, manufactured by Jacquemart, Paris, in 1812. During the analysis, an unexpected pigment was detected by both analytical techniques: lead-tin yellow type II. This pigment was used until ca. 1750, when other yellow pigments replaced it, thus it is very difficult to find it in paintings afterwards. Together with this pigment, red lead, Prussian blue, brochantite, yellow iron oxide, calcium carbonate, vermilion, carbon black of animal origin (bone black), lead white, and raw and burnt sienna were also determined by combining the analytical information provided by both techniques. A possible degradation of brochantite to antlerite is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Castro K, Vandenabeele P, Rodríguez-Laso MD, Moens L, Madariaga JM (2005) Spectrochim Acta Part A 61:2357–2363

    Article  CAS  Google Scholar 

  2. Vandenabeele P, Lambert K, Matthys S, Schudel W, Bergmans A, Moens L (2005) Anal Bioanal Chem 383(4):707–712

    Article  PubMed  CAS  Google Scholar 

  3. Edwards HGM, Farwell DW, Brooke CJ (2005) Anal Bioanal Chem 383(2):312–321

    Article  PubMed  CAS  Google Scholar 

  4. Ortega-Aviles M, Vandenabeele P, Tenorio D, Murillo G, Jimenez-Reyes M, Gutierrez N (2005) Anal Chim Acta 550(1–2):164–172

    Article  CAS  Google Scholar 

  5. Burgio L, Clark RJH, Sheldon L, Smith GD (2005) Anal Chem 77(5):1261–1267

    Article  PubMed  CAS  Google Scholar 

  6. Colomban P (2005) In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. Royal Society of Chemistry, LLetchworth, Herts, UK, pp 192–227

    Google Scholar 

  7. Barilaro D, Barone G, Crupi V, Donato MG, Majolino D, Messina G, Ponterio R (2005) J Mol Struct 744–747:827–831

    Article  CAS  Google Scholar 

  8. Edwards HGM(2005) In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. Royal Society of Chemistry, LLetchworth, Herts, UK, pp 84–96

    Google Scholar 

  9. Kendix E, Nielsen OF, Christensen MC (2004) J Raman Spectrosc 35(8/9):796–799

    Article  CAS  Google Scholar 

  10. Chaplin TD, Jurado-Lopez A, Clark RJH, Beech DR (2004) J Raman Spectrosc 35(7):600–604

    Article  CAS  Google Scholar 

  11. Rull F, Sansano A, Medina J (2005) In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. Royal Society of Chemistry, LLetchworth, Herts, UK, pp 121–129

    Google Scholar 

  12. Clarke M (2004) Stud Conserv 49(4):231–244

    Article  CAS  Google Scholar 

  13. Hayez V, Denoel S, Genadry Z, Gilbert B (2004) J Raman Spectrosc 35(8/9):781–785

    Article  CAS  Google Scholar 

  14. Chaplin TD, Clark RJH, Jacobs D, Jensen K, Smith GD (2005) Anal Chem 77(11):3611–3622

    Article  PubMed  CAS  Google Scholar 

  15. Castro K, Vandenabeele P, Rodríguez-Laso MD, Moens L, Madariaga JM (2004) Anal Bioanal Chem 379:674–683

    Article  PubMed  CAS  Google Scholar 

  16. Castro K, Pérez-Alonso M, Rodríguez-Laso MD, Madariaga JM (2004) Spectrochim Acta Part A 60:2919–2924

    Article  CAS  Google Scholar 

  17. Castro K, Perez M, Rodríguez-Laso MD, Madariaga JM (2004) J Raman Spectrosc 35:704–709

    Article  CAS  Google Scholar 

  18. Phillips M (1981) JAIC 20:83–90

    Google Scholar 

  19. Meharg A (2003) Nature 423:688

    Article  ADS  CAS  Google Scholar 

  20. Welsh FS (2001) Microscope 49:35–39

    CAS  Google Scholar 

  21. Wise D, Wise A (2004) J Raman Spectrosc 35(8/9):710–718

    Article  CAS  Google Scholar 

  22. Ricci C, Borgia I, Brunetti BG, Sgamellotti A, Fabbri B, Burla MC, Polidori G (2005) Archaeometry 47(3):557–570

    Article  CAS  Google Scholar 

  23. Gazulla MF, Gomez MP, Barba A, Orduna M (2004) Geostand Geoanal Res 28(2):203–212

    Article  CAS  Google Scholar 

  24. Comodi P, Bernardi M, Bentivoglio A, Gatta GD, Zanazzi PF (2004) Archaeometry 46(3):405–419

    Article  CAS  Google Scholar 

  25. Szokefalvi-Nagy Z, Demeter I, Kocsonya A, Kovacs I (2004) Nuc Instrum Methods Phys Res Sect B 226(1–2):53–59

    Article  ADS  CAS  Google Scholar 

  26. Rosi F, Miliani C, Borgia I, Brunetti B, Sgamellotti A (2004) J Raman Spectrosc 35(8/9):610–615

    Article  CAS  Google Scholar 

  27. Hahn O, Oltrogge D, Bevers H (2004) Archaeometry 46(2):273–282

    Article  CAS  Google Scholar 

  28. Constantinescu B, Bugoi R, Cojocaru V, Grambole D, Herrmann F, Popovici D (2004) Rom J Phys 48(1–4):347–354

    Google Scholar 

  29. Heck M, Rehren Th, Hoffmann P (2003) Archaeometry 45(1):33–44

    Article  CAS  Google Scholar 

  30. Hochleitner B, Desnica V, Mantler M, Schreiner M (2003) Spectrochim Acta Part B 58(4):641–649

    Article  CAS  Google Scholar 

  31. Meharg A (2004) Spectrosc Eur 16(5):16–19

    CAS  Google Scholar 

  32. Bicchieri M, Ronconi S, Romano FP, Pappalardo L, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E (2002) Spectrochim Acta Part B 57(7):1235–1249

    Article  Google Scholar 

  33. Schreiner M, Fruhmann B, Jembrih-Simburger D, Linke R (2004) Powder Diffr 19(1):3–11

    Article  CAS  Google Scholar 

  34. Moens L, Von Bohlen A, Vandenabeele P (2000) In: Ciliberto E, Spoto G (eds) Modern analytical methods in art and archeology. Wiley-Interscience, New York, 55–79

    Google Scholar 

  35. Mantler M, Klikovits J (2004) Adv X-Ray Anal 47:42–46

    CAS  Google Scholar 

  36. Vandenabeele P, Moens L (2004) In: Janssens K, Van Grieken R (eds) Comprehensive analytical chemistry. Elsevier, Amsterdam, pp 635–662

    Google Scholar 

  37. Ricci C, Borgia I, Brunetti BG, Miliani C, Sgamellotti A, Seccaroni C, Passalacqua P (2004) J Raman Spectrosc 35(8/9):616–621

    Article  CAS  Google Scholar 

  38. Nouvel-Kammerer O (2000) French scenic wallpaper 1795–1865, Musée des Arts décoratifs. Flammarion, Paris

    Google Scholar 

  39. Otaolea P (2004) Metodología en la Recuperación de Papeles Pintados del Siglo XIX. PhD thesis, Fine Arts Faculty, Leioa

    Google Scholar 

  40. Castro K, Pérez-Alonso M, Rodríguez-Laso MD, Madariaga JM (2005) Anal Bioanal Chem 382:248–258

    Article  PubMed  CAS  Google Scholar 

  41. Edwards HGM, Farwell DW, Newton EM, Rull F (1999) Analyst 124:1323–1326

    Article  CAS  Google Scholar 

  42. Bikiaris D, Daniilia S, Sotiropoulou S, Katsimbiri O, Pavlidou E, Moutsatsou AP, Chryssoulakis Y (2000) Spectrochim Acta, Part A 56:3–18

    Article  Google Scholar 

  43. Roy A (1997) In: Kühn H (eds) Artists’ pigments: a handbook of their history and characterization, vol. 2. Oxford University Press, Oxford

    Google Scholar 

  44. Hayez V, Guillaume J, Hubin A, Terryn H (2004) J Raman Spectrosc 35:732–738

    Article  CAS  Google Scholar 

  45. Naumova MM, Pisareva SA (1994) Stud Conserv 39:277–283

    Article  CAS  Google Scholar 

  46. Naumova MM, Pisareva SA, Nechiporenko GO (1995) Stud Conserv 35:81–88

    Article  Google Scholar 

  47. Gilbert B, Denoël S, Weber G, Allart D (2003) Analyst 128:1213–1217

    Article  PubMed  CAS  Google Scholar 

  48. Marani D, Patterson JW, Anderson PR (1995) Water Res 29(5):1317–1326

    Article  CAS  Google Scholar 

  49. Puigdomenech I (2001) MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms), version 15. Department of Inorganic Chemistry, The Royal Institute of Technology, Stockholm

    Google Scholar 

Download references

Acknowledgements

Dr. K. Castro is grateful to the Ministry of Education and Science for his contract at the UPV/EHU (PTA 2003-02-00050). M. Pérez-Alonso is grateful to the Basque Country Government for her pre-doctoral fellowship. This work was partially funded by the European Project PAPERTECH (6FP-INCO-CT-2004-509095). Authors want to thank Diputación Foral de Álava, Diputación Foral de Guipuzcoa, Varona family and Ikastola Almen for all their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kepa Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, K., Pérez-Alonso, M., Rodríguez-Laso, M.D. et al. Non-invasive and non-destructive micro-XRF and micro-Raman analysis of a decorative wallpaper from the beginning of the 19th century. Anal Bioanal Chem 387, 847–860 (2007). https://doi.org/10.1007/s00216-006-0593-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0593-0

Keywords

Navigation