Skip to main content
Log in

Removal of major interference sources in aqueous near-infrared spectroscopy techniques

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work describes a hybrid procedure for eliminating major interference sources in aqueous near-infrared (NIR) spectra, that include aqueous influence, noise, and systemic variations irrelevant to concentration. The scheme consists of two parts: extension of wavelet prism (WPe) and orthogonal signal correction (OSC). First, WPe is employed to remove variations due to aqueous absorbance and noise; then OSC is applied to remove systemic spectral variations irrelevant to concentration. Although water possesses strong absorption bands that overshadow and overlap the absorption bands of analytes, along with noise and systematic interference, successful calibration models can be generated by employing the method proposed here. We show that the elimination of major interference sources from the aqueous NIR spectra results in a substantial improvement in the precision of prediction, and reduces the required number of PLS components in the model. In addition, the strategy proposed here can be applied to various analytical data for quantitative purposes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen D, Wang F, Shao XG, Su QD (2003) Analyst 128:1200–1203

    Article  CAS  PubMed  Google Scholar 

  2. Bao JS, Cai YZ, Corke H (2001) J Food Sci 66:936-939

    CAS  Google Scholar 

  3. Ding HB, Xu RJ (2000) J Agr Food Chem 48:2193–2198

    Article  CAS  Google Scholar 

  4. Wold S, Antti H, Lindgren F, Öhman J (1998) Chemometr Intell Lab 44:175–185

    Article  CAS  Google Scholar 

  5. Bertran E, Iturriaga H, Maspoch S, Montoliu I (2001) Anal Chim Acta 431:303–311

    Article  CAS  Google Scholar 

  6. Blanco M, Coello J, Iturriaga H, Maspoch S, González Bañó R (2000) Analyst 125:749–752

    Article  CAS  Google Scholar 

  7. Lafargue ME, Feinberg MH, Daudin JJ, Rutledge DN (2003) Anal Bioanal Chem 375:496–504

    CAS  PubMed  Google Scholar 

  8. Pan ST, Chung H, Arnold MA, Small GW (1996) Anal Chem 68:1124–1135

    Article  CAS  PubMed  Google Scholar 

  9. Small GW, Zhang L (2002) Anal Chem 74:4097–4108

    Article  PubMed  Google Scholar 

  10. Arnold MA, Small GW (1990) Anal Chem 62:1457–1464

    CAS  PubMed  Google Scholar 

  11. Heiman A, Licht S (1999) Anal Chim Acta 394:135–147

    Article  CAS  Google Scholar 

  12. Rodriguez-Saona LE, Fry FS, Mclaughlin MA, Calvey EM (2001) Carbohyd Res 336:63–74

    Article  CAS  Google Scholar 

  13. Rutan SC, de Noord OE, Andréa RR (1998) Anal Chem 70:3198–3201

    Article  CAS  Google Scholar 

  14. Fischer WB, Eysel HH, Nielsen OF, Bertie JE (1994) Appl Spectrosc 48:107–112

    CAS  Google Scholar 

  15. Dull GG, Giangiacomo R (1984) J Food Sci 49:1601–1603

    CAS  Google Scholar 

  16. Lanza E, Li BW (1984) J Food Sci 49:995–998

    CAS  Google Scholar 

  17. Giangiacomo R, Dull GG (1986) J Food Sci 51:679–683

    CAS  Google Scholar 

  18. Berentsen S, Stolz T, Molt K (1997) J Mol Struct 410:581–585

    Google Scholar 

  19. Small GW, Arnold MA, Marquardt LA (1993) Anal Chem 65:3279–3289

    CAS  PubMed  Google Scholar 

  20. Tan HW, Brown SD (2002) J Chemometr 16:228–240

    Article  CAS  Google Scholar 

  21. Woodward AM, Alsberg BK, Kell DB (1998) Chemometr Intell Lab 40:101–107

    Article  CAS  Google Scholar 

  22. Windig W, Phalp JM, Payne AW (1996) Anal Chem 68:3602–3606

    Article  CAS  Google Scholar 

  23. Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP (1993) J Magn Reson Imaging 3:521–530

    CAS  PubMed  Google Scholar 

  24. Blanco M, Coello J, Iturriaga H, Maspoch S, Pagès J (2000) Chemometr Intell Lab 50:75–82

    Article  CAS  Google Scholar 

  25. Andersson CA (1999) Chemometr Intell Lab 47:51–63

    Article  CAS  Google Scholar 

  26. Blanco M, Coello J, Montoliu I, Romero MA (2001) Anal Chim Acta 434:125–132

    Article  CAS  Google Scholar 

  27. Jouan-Rimbaud D, Walczak B, Poppi RJ, deNoord OE, Massart DL (1997) Anal Chem 69:4317–4323

    Article  CAS  Google Scholar 

  28. Geladi P, MacDougall D, Martens H (1985) Appl Spectrosc 39:491–500

    Google Scholar 

  29. Barnes RJ, Dhanoa MS, Lister SJ (1989) Appl Spectrosc 43:772–777

    Google Scholar 

  30. Isaksson T, Naes T (1988) Appl Spectrosc 42:1273–1284

    CAS  Google Scholar 

  31. Naes T, Isaksson T, Kowalski BR (1990) Anal Chem 62:664–673

    CAS  Google Scholar 

  32. Helland IS, Naes T, Isaksson T (1995) Chemometr Intell Lab 29:233–241

    Article  CAS  Google Scholar 

  33. Sjöblom J, Svensson O, Josefson M, Kullberg H, Wold S (1998) Chemometr Intell Lab 44:229–244

    Article  Google Scholar 

  34. Gorry PA (1990) Anal Chem 62:570–573

    CAS  Google Scholar 

  35. Shao XG, Leung AKM, Chau FT (2003) Accounts Chem Res 36:276–283

    Article  CAS  Google Scholar 

  36. Mallat SG (1989) IEEE T Pattern Anal 11:674–693

    Article  Google Scholar 

  37. Shao XG, Cai WS (1998) Rev Anal Chem 17:235–285

    CAS  Google Scholar 

  38. Koshoubu J, Iwata T, Minami S (2000) Appl Spectrosc 54:148–152

    Article  CAS  Google Scholar 

  39. Fearn T (2000) Chemometr Intell Lab 50:47–52

    Article  CAS  Google Scholar 

  40. Eriksson L, Trygg J, Johansson E, Bro R, Wold S (2000) Anal Chim Acta 420:181–195

    Article  CAS  Google Scholar 

  41. Westerhuis JA, Jong SD, Smilde AK (2001) Chemometr Intell Lab 56:13–25

    Article  CAS  Google Scholar 

  42. Höskuldsson A (2001) Chemometr Intell Lab 55:23–38

    Article  Google Scholar 

  43. Trygg J, Wold S (2002) J Chemometr 16:119–128

    Article  CAS  Google Scholar 

  44. Svensson O, Kourti T, MacGregor JF (2002) J Chemometr 16:176–188

    Article  CAS  Google Scholar 

  45. Liang YZ, Fang KT, Xu QS (2001) Chemometr Intell Lab 58:43–57

    Article  CAS  Google Scholar 

  46. Chaupart N, Serper G (1998) J Near Infrared Spec 6:307–316

    CAS  Google Scholar 

  47. Marten GC, Halgerson JL, Sleper DA (1988) Crop Sci 28:163–167

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20175024) and the State Tobacco Monopoly Administration Bureau of China (No. 110200101042, 110200201018)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingde Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Hu, B., Shao, X. et al. Removal of major interference sources in aqueous near-infrared spectroscopy techniques. Anal Bioanal Chem 379, 143–148 (2004). https://doi.org/10.1007/s00216-004-2569-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2569-2

Keywords

Navigation