Skip to main content
Log in

Improving tritium exposure reconstructions using accelerator mass spectrometry

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Direct measurement of tritium atoms by accelerator mass spectrometry (AMS) enables rapid low-activity tritium measurements from milligram-sized samples and permits greater ease of sample collection, faster throughput, and increased spatial and/or temporal resolution. Because existing methodologies for quantifying tritium have some significant limitations, the development of tritium AMS has allowed improvements in reconstructing tritium exposure concentrations from environmental measurements and provides an important additional tool in assessing the temporal and spatial distribution of chronic exposure. Tritium exposure reconstructions using AMS were previously demonstrated for a tree growing on known levels of tritiated water and for trees exposed to atmospheric releases of tritiated water vapor. In these analyses, tritium levels were measured from milligram-sized samples with sample preparation times of a few days. Hundreds of samples were analyzed within a few months of sample collection and resulted in the reconstruction of spatial and temporal exposure from tritium releases. Although the current quantification limit of tritium AMS is not adequate to determine natural environmental variations in tritium concentrations, it is expected to be sufficient for studies assessing possible health effects from chronic environmental tritium exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Covello VT, Merkhofer MW (1993) Risk assessment methods—approaches for assessing health and environmental risk. Plenum, New York, 318 pp

  2. Louvar JF, Louvar BD (1998) Health and environmental risk analysis: fundamental and applications. Prentice Hall PTR, New Jersey, 678 pp

    Google Scholar 

  3. Miller CW, Smith JM (1996) Health Phys 71:420–424

    Google Scholar 

  4. Straume T et al (1996) Challenges in dose reconstruction: examples from Chernobyl Hiroshima, biomarkers, and environmental materials, UCRL-JC-125029, Lawrence Livermore National Laboratory, 30 pp

    Google Scholar 

  5. Griffith RV (1998) Radiat Prot Dosim 3–9

  6. Thompson CB, McArthur RD (1996) Health Phys 71:470–476

    Google Scholar 

  7. Whicker FW et al (1996) Health Phys 71:477–486

    Google Scholar 

  8. Kirchner TB et al (1996) Health Phys 71:487–501

    Google Scholar 

  9. Simon SL, Graham JC Dose (1996) 71:438–456

  10. Musolino SV et al (1997) Health Phys 73:651–662

    Google Scholar 

  11. Anspaugh LR, Bouville A (1995) United States-assisted studies on dose reconstruction in the former Soviet Union, UCRL-JC-122291, Lawrence Livermore National Laboratory, 8 pp

  12. Akiba S (1991) J Radiat Res 32:339–346

    PubMed  Google Scholar 

  13. Ezaki H et al (1991) J Radiat Res 32:193–200

    PubMed  Google Scholar 

  14. Straume T et al (2003) 424:539–542

  15. Nell JV (1998) Proc Natl Acad Sci USA 95:5432–5436

    Article  PubMed  Google Scholar 

  16. Kellerer AM (2000) Radiat Environ Biophys 39:17–24

    CAS  PubMed  Google Scholar 

  17. Gavrilin YI et al (1995) Chernobyl accident: reconstruction of thyroid dose for inhabitants of the Republic of Belarus, UCRL-JC-122293, Lawrence Livermore National Laboratory, 97 pp

    Google Scholar 

  18. Ispenkov EA et al (1996) Dose reconstruction protocol: World Health Organization international programme on the health effects of the Chernobyl accident, UCRL-AR-125179, Lawrence Livermore National Laboratory, 35 pp

    Google Scholar 

  19. Wing S et al (1997) Environ Health Perspect 105:52–57

    Google Scholar 

  20. Talbott EO et al (2000) Environ Health Perspect 108:545–552

    Google Scholar 

  21. Shipler DB et al (1996) Health Phys 71:532–544

    Google Scholar 

  22. Meyer KR et al (1996) Health Phys 71:425–437

    Google Scholar 

  23. Ripple SR et al (1996) Health Phys 71:502–509

    Google Scholar 

  24. Widner TE et al (1996) Health Phys 71:457–469

    Google Scholar 

  25. Degteva MO et al (1996) Dose reconstruction for the Ural population, UCRL-PROP-123713, Lawrence Livermore National Laboratory, 176 pp

  26. Bougrov NG et al (1998) Health Phys 75:574–583

    CAS  PubMed  Google Scholar 

  27. Papp Z (1998) Health Phys 74:393–397

    Google Scholar 

  28. Tung CJ et al (1998) Health Phys 74:707–713

    Google Scholar 

  29. Environmental Protection Agency (2002) What is an exposure assessment? Office of Pollution Prevention and Toxicshttp://www.epa.gov/opptintr/exposure/docs/exposurep.htm, June 13, 2002

  30. Anspaugh LR (1996) Technical basis for dose reconstruction, UCRL-JC-123714, Lawrence Livermore National Laboratory, 36 pp

  31. Amiro BD (1997) J Environ Radioact 36:109

    Article  CAS  Google Scholar 

  32. Thorburn PJ et al (1993) J Hydrol 150:563–587

    Article  Google Scholar 

  33. Murphy CE et al (1982) Nucl Saf 23:677–684

    CAS  Google Scholar 

  34. Raney F, Vaadia Y (1965) Plant Physiol 40:383–388

    Google Scholar 

  35. Erdman JA, Christenson S (2000) Ground Water Monit Rem 20:120–126

    CAS  Google Scholar 

  36. Kylin H et al (1996) Fresenius J Anal Chem 356:62–69

    CAS  Google Scholar 

  37. Nabais C et al (2000) Sci Total Environ 232:33–37

    Article  Google Scholar 

  38. Schaumloffel JC et al (1998) J Environ Qual 27:851–859

    CAS  Google Scholar 

  39. Simonich SL, Hites RA (1995) Environ Sci Technol 29:2905–2914

    CAS  Google Scholar 

  40. Kigoshi K, Tomikura Y (1961) Bull Chem Soc Jpn 34:1738–1739

    CAS  Google Scholar 

  41. Brown RM (1979) Environmental tritium in trees. Behavior of Tritium in the Environment. International Atomic Energy Agency, Vienna, pp 405–418

  42. Kozak K, Biro T (1984) Health Phys 46:193–203

    Google Scholar 

  43. Kozak K et al (1986) Acta Phys Hung 59:59–62

    CAS  Google Scholar 

  44. Kozak K et al (1989) Radiocarbon 31:766–770

    Google Scholar 

  45. Kozak K et al (1993) J Environ Radioact 19:67–77

    Article  CAS  Google Scholar 

  46. Yamada Y et al (1989) J Radioanal Nucl Chem 132:59–65

    CAS  Google Scholar 

  47. Kalin RM et al (1995) Fusion Technol 28:883–887

    CAS  Google Scholar 

  48. Fuma S, Inoue Y (1995) Appl Radiat Isotopes 46:991–997

    Article  CAS  Google Scholar 

  49. Muller RA (1977) Science 196:489–494

    CAS  Google Scholar 

  50. Vogel JS et al (1995) Anal Chem 67:A353–A359

    Google Scholar 

  51. Gray J, Song SJ (1984) Earth Planet Sci Lett 70:129–138

    Article  CAS  Google Scholar 

  52. Schimmelmann A, Deniro MJ (1993) Anal Chem 65:789–792

    CAS  Google Scholar 

  53. White JW et al (1994) Geochim Cosmochim Acta 58:851–862

    Article  CAS  Google Scholar 

  54. Terwilliger VJ, Deniro MJ (1995) Geochim Cosmochim Acta 59:5199–5207

    Article  CAS  Google Scholar 

  55. Chiarappa-Zucca ML et al (2003) Anal Chem 74:6285–6290

    Article  Google Scholar 

  56. Middleton R et al (1990) Nucl Instrum Methods Phys Res B 47:409–414

    Article  Google Scholar 

  57. Theodorsson P (1999) Appl Radiat Isotopes 50:311–316

    Article  CAS  Google Scholar 

  58. Surano KA et al (1992) J Radioanal Nucl Chem 161:443–453

    CAS  Google Scholar 

  59. Beyerle U et al (2000) Environ Sci Technol 34:2042–2050

    Article  CAS  Google Scholar 

  60. Neary MP (1997) Radioact Radiochem 8:23–35

    CAS  Google Scholar 

  61. Nimz GJ, Thompson JL (1992) Underground radionuclide migration at the Nevada test site, DOE/NV-346 UC-703. United States Department of Energy—Nevada Field Office, 15 pp

  62. Guell MA, Hunt JR (2003) Water Resour Res 39:1175–1184

    Article  Google Scholar 

  63. Love AH et al (2002) Environ Sci Technol 36:2848–2852

    Article  CAS  PubMed  Google Scholar 

  64. Lawrence Berkeley National Laboratory Site (1965–2000) Environmental Report LBL-27170

  65. Love AH et al (2003) Environ Sci Technol 37:4330–4335

    Article  CAS  PubMed  Google Scholar 

  66. Love AH (2002) PhD thesis, University of California at Berkeley, 172 pp

Download references

Acknowledgements

Supported by the Center for Accelerator Mass Spectrometry Mini-grant Program, the Laboratory Directed Research and Development (LDRD) Program (00-ERI-01), and the Sabbatical Leave Program at Lawrence Livermore National Laboratory. Additional funding from the National Institute of Environmental Health Sciences, Superfund Basic Research Program, P42 ES04705. This work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. Discussions with S. Ring Peterson were extremely helpful in understanding the interaction of tritiated water vapor with vegetation. Additional thanks go to John Southon, Tom Guilderson, Tom Brown, Marina Chiarappa-Zucca, and Karen Dingley from Lawrence Livermore National Laboratory, and Gary Zeman, Ron Pauer, and Linnea Wahl from Lawrence Berkeley National Laboratory Environment, Health, and Safety Division

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Love.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, A.H., Hunt, J.R., Vogel, J.S. et al. Improving tritium exposure reconstructions using accelerator mass spectrometry. Anal Bioanal Chem 379, 198–203 (2004). https://doi.org/10.1007/s00216-003-2425-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2425-9

Keywords

Navigation