Skip to main content
Log in

Theoretical study of intermolecular interaction energy for \(\textrm{F}_{2}\cdots \textrm{F}_{2}\) complex

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The ab initio intermolecular pair potentials of \(\textrm{F}_{2}\) dimer were calculated for five leading stable configurations, using the symmetry-adapted perturbation theory. We employ an improved Lennard–Jones potential to best fit the potential energy surface of each leading configuration. The molecular anisotropy is characterized through the expansion of the degrees of freedom of the analytical potential energy surface (PES) using the spherical harmonics. The resulting analytical PES is used to calculate the second virial coefficients and compared with the experimental values and other theoretical works to test the quality of the presented intermolecular potential. Finally, we performed the theoretical computation of viscosity and self-diffusion transport properties for the \(\textrm{F}_{2} \cdots \textrm{F}_{2}\) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Takayanagi K (1965) Adv. At. Mol. Phys. 1:149

    Article  Google Scholar 

  2. Burton PG, Senff UE (1982) J. Chem. Phys. 76:6073

    Article  CAS  Google Scholar 

  3. Schaefer J, Kohler WE (1989) Z. Phys. D At. Mol. Clust. 13:217

    Article  CAS  Google Scholar 

  4. Hinde RJ (2008) J. Chem. Phys. 128:154308

    Article  PubMed  Google Scholar 

  5. Donchev AG, Galkin NG, Tarasov VI (2007) J. Chem. Phys. 126:174307

    Article  CAS  PubMed  Google Scholar 

  6. Van TP, Deiters UK (2017) Chem. Phys. 485:67–80

    Article  Google Scholar 

  7. Tashakor S, Noorbala MR, Namazian M (2016) Int. J. Quantum Chem. 116:1477–1485

    Article  CAS  Google Scholar 

  8. Patkowski K, Cencek W, Jankowski P, Szalewicz K, Mehl JB, Garberoglio G, Harvey AH (2008) J. Chem. Phys. 129:094304

    Article  PubMed  Google Scholar 

  9. Diep P, Johnson JK (2000) J. Chem. Phys. 112:4465

    Article  CAS  Google Scholar 

  10. Cappelletti D, Pirani F, Bussery-Honvault B, Gomez L, Bartolomei M (2008) Phys. Chem. Chem. Phys. 10:4281–4293

    Article  CAS  PubMed  Google Scholar 

  11. Barreto P, Cruz A, Euclides H (2020) J. Mol. Model. 26:277

    Article  CAS  PubMed  Google Scholar 

  12. Correa E, Albernaz AF, Barreto PRP, Aquilanti V (2021) Chem. Phys. Lett. 779:138845

    Article  CAS  Google Scholar 

  13. Palazzeti F, Munusamy E, Lombardi A, Grossi G, Aquilanti V (2011) Int. J. Quant. Chem. 111:318

    Article  Google Scholar 

  14. Albernaz AF, Aquilanti V, Barreto PRP, Caglioti C, Cruz ACPS, Grossi G, Lombardi A, Palazzetti F (2016) J. Phys. Chem. A 120:5315–5324

    Article  CAS  PubMed  Google Scholar 

  15. Maitland GC, Smith EB (1973) Chem. Phys. Lett. 22:443

    Article  CAS  Google Scholar 

  16. Barreto PRP, Vilela AFA, Lombardi A, Maciel GS, Palazzetti F, Aquilanti V (2007) J. Phys. Chem. A 111:12754–12762

    Article  CAS  PubMed  Google Scholar 

  17. Maciel GS, Barreto PRP, Palazzetti F, Lombardi A, Aquilanti V (2008) J. Chem. Phys. 129:164302

    Article  PubMed  Google Scholar 

  18. Barreto PRP, Albernaz AF, Palazzetti F, Lombardi A, Grossi G, Aquilanti V (2011) Phys. Scrip. 84:022111

    Article  Google Scholar 

  19. Barreto PRP, Albernaz AF, Capobianco A, Palazzetti F, Lombardi A, Grossi G, Aquilanti V (2012) Comp. Theor. Chem. 990:53

    Article  CAS  Google Scholar 

  20. Barreto PRP, Ribas VW, Palazzetti F (2009) J. Phys. Chem. A 113:15047–15054

    Article  CAS  PubMed  Google Scholar 

  21. Lombardi A, Palazzetti F, Peroncelli L et al (2007) Theor. Chem. Account. 117:709–721

    Article  CAS  Google Scholar 

  22. Barreto PRP, Albernaz AF, Palazzetti F (2012) Int. J. Quant. Chem. 112:834–847

    Article  CAS  Google Scholar 

  23. Barreto PRP, Cruz ACPS, Barreto RLP, Palazzetti F, Albernaz AF, Lombardi A, Maciel GS, Aquilanti V (2017) J. Mol. Spectrosc. 337:163

    Article  CAS  Google Scholar 

  24. Hohenstein EG, Parrish RM, Gonthier JF, Smith DGA (2022) SAPT: symmetry-adapted perturbation theory. https://psicode.org/

  25. NIST Diatomic Spectral Database. http://www.physics.nist.gov/PhysRefData/MolSpec/Diatomic/index.html

  26. Bukowski R, Cencek W, Garcia J, Jankowski P, Jeziorska P, Jeziorski B, Kucharski SA, Lotrich VF, Metz MP, Misquitta AJ, Moszyński R, Patkowski K, Podeszwa R, Rob F, Rybak S, Szalewicz K, Williams HL, Wheatley RJ, Wormer PES, Żuchowski PS (2020) SAPT2020: an Ab Initio program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies, university of delaware and University of Warsaw. http://www.physics.udel.edu/~szalewic/SAPT/SAPT.html

  27. Jeziorski B, Moszyński R, Szalewicz K (1994) Chem. Rev. 94:1887–1930

    Article  CAS  Google Scholar 

  28. Pirani F, Brizi S, Roncaratti LF, Casavecchia P, Cappelletti D, Vecchiocattivi F (2008) Phys. Chem. Chem. Phys. 10:5489–5503

    Article  CAS  PubMed  Google Scholar 

  29. Hong Q, Sun Q, Bartolomei M, Pirani F, Coletti C (2020) Phys. Chem. Chem. Phys. 20:9375–9387

    Article  Google Scholar 

  30. Pirani F, Albert M, Castro A, Teixidor MM, Cappelletti D (2004) Chem. Phys. Lett. 394

  31. Lombardi A, Palazzetti F (2008) J. Mol. Struct.: THEOCHEM. 852:22–29

    Article  CAS  Google Scholar 

  32. Dymond JH, Smith EB (2002) The virial coefficients of pure gases. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  33. Damyanova M, Zarkova L, Hohm U (2009) Int. J. Thermophys. 30:1165–1178

    Article  CAS  Google Scholar 

  34. Monchick L, Mason EA (1961) J. Chem. Phys. 35:1676–1697

    Article  CAS  Google Scholar 

  35. Pack RT (1983) J. Chem. Phys. 78:7217

    Article  CAS  Google Scholar 

  36. Hirschfelder JO, Bird RB, Spotz EL (1948) J. Chem. Phys. 16:968–981

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Brazilian Research Council FAP-DF Grant, Institutional Process Number 00193.00001811/2022-95.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. AFA and PRPB performed ab initio calculations. AFAlbernaz and EC performed the calculations of different properties, and their analysis, and wrote the first draft of the paper. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Alessandra F. Albernaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Second virial calculations

The value of \(B_2(T)\) for a given temperature T is calculated through the following expansion (10):

$$\begin{aligned} B_{2}(T) = \left[ B_\textrm{cl}(T)+B_{I}^r(T)+B_{I}^{a,I}(T)+B_{I}^{a,\mu }(T)+\cdots \right] \end{aligned}$$
(10)

with the aid of Eq.’s (11)–(14) [35]:

$$\begin{aligned} B_\textrm{cl}(T)= & {} \dfrac{N_A}{4}\int ^{2\pi }_{0}\int ^{\pi }_{0}\sin {\theta _1}\int ^{\pi }_{0}\sin {\theta _2}\times \nonumber \\{} & {} \int ^{\infty }_{0}\left( 1-\exp \left( -\dfrac{V}{k_B T}\right) \right) r^{2}\textrm{drd}\theta _1\textrm{d}\theta _2\textrm{d}\phi \end{aligned}$$
(11)
$$\begin{aligned} B_{I}^r(T)= & {} \dfrac{N_{A}\hbar ^2}{96\mu k^{3}_{B}T^{3}} \int ^{2\pi }_{0}\int ^{\pi }_{0}\sin {\theta _1}\int ^{\pi }_{0}\sin {\theta _2}\times \nonumber \\{} & {} \int ^{\infty }_{0}\exp \left( -\dfrac{V}{k_B T}\right) \left( \frac{\partial V}{\partial r}\right) ^{2}r^{2}\mathrm drd\theta _1d\theta _2d\phi \end{aligned}$$
(12)
$$\begin{aligned} B_{I}^{a,I}(T)= & {} \dfrac{-N_{A}}{48k^{3}_{B}T^{3}}\int ^{2\pi }_{0}\int ^{\pi }_{0}\sin {\theta _1} \int ^{\pi }_{0}\sin {\theta _2}\int ^{\infty }_{0}\exp \left( -\dfrac{V}{k_B T}\right) \nonumber \\{} & {} \times \left[ \sum \limits _{i=1}^2\frac{\hbar ^2}{2I_{i}}\left( \cot {\theta _i}\frac{\partial V}{\partial \theta _i}+\frac{\partial ^2 V}{\partial \theta _i^2}+\frac{1}{\sin ^2{\theta _i}}\frac{\partial ^2 V}{\partial \phi ^2}\right) \right] \nonumber \\{} & {} \quad r^{2}\textrm{drd}\theta _1\textrm{d}\theta _2\textrm{d}\phi \end{aligned}$$
(13)
$$\begin{aligned} B_{I}^{a,\mu }(T)= & {} \dfrac{-N_{A}}{48k^{3}_{B}T^{3}}\int ^{2\pi }_{0}\int ^{\pi }_{0}\sin {\theta _1}\int ^{\pi }_{0}\sin {\theta _2}\int ^{\infty }_{0}\exp \left( -\dfrac{V}{k_B T}\right) \times \nonumber \\{} & {} \left[ \sum \limits _{i=1}^2\frac{\hbar ^2}{2\mu r^2}\left( \cot {\theta _i}\frac{\partial V}{\partial \theta _i}+\frac{\partial ^2 V}{\partial \theta _i^2}+\frac{1}{\sin ^2{\theta _i}}\frac{\partial ^2 V}{\partial \phi ^2}\right) \right] \nonumber \\{} & {} \quad r^{2}\textrm{drd}\theta _1\textrm{d}\theta _2\textrm{d}\phi \end{aligned}$$
(14)

in which \(k_B\) and \(N_A\) are Boltzmann’s and Avogadro’s constants, respectively.

Appendix B Reduced collision integrals

The reduced collision integrals used to calculate the viscosity and self-diffusion are calculated through the following formulas

$$\begin{aligned} \Omega ^{(i,j)*}=\frac{1}{(j+1)!}\int \limits _ 0^{\infty }e^{-\gamma ^2}(\gamma ^2)^{j+1}Q^{(i)*}\textrm{d}(\gamma ^2) \end{aligned}$$
(15)

where \(\gamma ^2\equiv mv_0^2/4kT\) with \(v_0\) being the initial relative speed of collision. \(Q^{(i)*}\) is the reduced cross section given by

$$\begin{aligned} Q^{(i)*}=\frac{2}{R_0^2}\left[ 1-\frac{1}{2}\frac{1+(-1)^i}{1+i}\right] ^{-1} \int \limits _0^{\infty }\left( 1-\cos ^i{\chi }\right) b\textrm{d}b \end{aligned}$$
(16)

with

$$\begin{aligned} \chi =\pi -2b\int \limits _{r_m}^{\infty }\left\{ 1 -\frac{b^2}{r^2}-\frac{V(R,\theta _1,\theta _2,\phi )}{\frac{1}{4}mv_0^2}\right\} ^{-\frac{1}{2}}\frac{\mathrm{{d}}r}{r^2} \end{aligned}$$
(17)

where \(r_m\) is the closest approach of molecules given as a function of b and \(v_0\) through the equation

$$\begin{aligned} 1-\frac{b^2}{r_m^2}-\frac{V(r_m,\theta _1,\theta _2,\phi )}{\frac{1}{4}mv_0^2}=0 \end{aligned}$$
(18)

It is convenient to define adimensional variables such that

$$\begin{aligned} r^*= & {} r/R_0 \nonumber \\ b^*= & {} b/R_0 \nonumber \\ r_m^*= & {} r_m/R_0 \nonumber \\ (v_0^*)^2= & {} \frac{1}{4}\frac{mv_0^2}{D_e^\textrm{spher}} \end{aligned}$$
(19)

where \(D_e^\textrm{spher}\) is the well depth of the isotropic term \(V^\textrm{spher}_\textrm{avg}(R)\) calculated through the formula

$$\begin{aligned} V^\textrm{spher}_\textrm{avg}(R)=\int \limits _{-1}^{1}\int \limits _{-1}^{1}\int \limits _{0}^{2\pi }V(R,\theta _1,\theta _2,\phi )\textrm{d}\phi \textrm{d}(\cos {\theta _1})\textrm{d}(\cos {\theta _2}) \end{aligned}$$
(20)

This enables us to rewrite the integrals (16) and (17) in a more convenient way for numerical calculations. However, the lower limit of integration of Eq. (17) reveals a singularity of the function inside the integral that can be avoided by the substitution \(\sin {\alpha }=r_m^*/r^*\) into integral in Eq. (17). The temperature can make the calculation of \(\chi\) a tough task. For lower temperatures, some values of energy in Eq. (15) may cause the molecules to orbiting each other making the integral in Eq. (17) diverges. Actually, the problem becomes more evident when one tries to calculate the roots of equation (18) in which will appear two values of \(r_m\) for such temperatures and energies. To circumvent this situation, one needs to avoid these regions in Eq. (17) as discussed in Hirschfelder et al. [36] work.

Finally, if one assumes that all relative orientations are equally probable, we have

$$\begin{aligned} \langle \Omega ^{(i,j)*}\rangle =\frac{1}{8\pi }\int \limits _{-1}^{1} \int \limits _{-1}^{1}\int \limits _{0}^{2\pi }\Omega ^{(i,j)*}\textrm{d}\phi \textrm{d}(\cos {\theta _1})\textrm{d}(\cos {\theta _2}) \end{aligned}$$
(21)

and

$$\begin{aligned}{} & {} f_{\eta }=1+\frac{3}{196}\left[ 8\frac{\langle \Omega ^{(2,3)*}\rangle }{\langle \Omega ^{(2,2)*}\rangle }-7\right] ^2 \nonumber \\{} & {} f_{D}=1+\frac{1}{8}\frac{\left[ 6\frac{\langle \Omega ^{(1,2)*}\rangle }{\langle \Omega ^{(1,1)*}\rangle }-5\right] ^2}{\left[ 2\frac{\langle \Omega ^{(2,2)*}\rangle }{\langle \Omega ^{(1,1)*}\rangle }+5\right] } \end{aligned}$$
(22)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albernaz, A.F., Barreto, P.R.P. & Correa, E. Theoretical study of intermolecular interaction energy for \(\textrm{F}_{2}\cdots \textrm{F}_{2}\) complex. Theor Chem Acc 142, 89 (2023). https://doi.org/10.1007/s00214-023-03027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03027-3

Keywords

Navigation