Skip to main content
Log in

Ab initio molecular dynamics study of overtone excitations in formic acid and its water complex

Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this article, we present results from ab initio molecular dynamics simulation of overtone excitation in formic acid monomer and its water complex in the gas phase. For the monomer, a conformation change is observed employing both OH and CH vibrational excitations, which supports experimental findings. In the formic acid–water complex, interconversion also takes place, but it proceeds via hydrogen exchange rather than via intramolecular reaction. Simulations raise a question on effect of quantum and matrix effects to the results. Also, a brief test of different computation methods was done on the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Pettersson M, Lundell J, Khriachtchev L, Räsänen M (1997) J Am Chem Soc 119(48):11715. https://doi.org/10.1021/ja972362l

    Article  CAS  Google Scholar 

  2. Olbert-Majkut A, Ahokas J, Pettersson M, Lundell J (2013) J Phys Chem A 117(7):1492. https://doi.org/10.1021/jp311749z

    Article  CAS  PubMed  Google Scholar 

  3. Olbert-Majkut A, Ahokas J, Lundell J, Pettersson M (2010) Phys Chem Chem Phys 12:7138. https://doi.org/10.1039/B926658E

    Article  CAS  PubMed  Google Scholar 

  4. Olbert-Majkut A, Ahokas J, Lundell J, Pettersson M (2011) J Raman Spectrosc 42(8):1670. https://doi.org/10.1002/jrs.2909

    Article  CAS  Google Scholar 

  5. Marushkevich K, Khriachtchev L, Räsänen M, Melavuori M, Lundell J (2012) J Phys Chem A 116(9):2101. https://doi.org/10.1021/jp209714e

    Article  CAS  PubMed  Google Scholar 

  6. Marushkevich K, Khriachtchev L, Lundell J, Domanskaya A, Räsänen M (2010) J Phys Chem A 114(10):3495. https://doi.org/10.1021/jp911515f

    Article  CAS  PubMed  Google Scholar 

  7. Marushkevich K, Khriachtchev L, Lundell J, Räsänen M (2006) J Am Chem Soc 128(37):12060. https://doi.org/10.1021/ja064154b

    Article  CAS  PubMed  Google Scholar 

  8. Pettersson M, Maçôas EMS, Khriachtchev L, Lundell J, Fausto R, Räsänen M (2002) J Chem Phys 117(20):9095. https://doi.org/10.1063/1.1521429

    Article  CAS  Google Scholar 

  9. Marushkevich K, Khriachtchev L, Räsänen M (2007) J Phys Chem A 111(11):2040. https://doi.org/10.1021/jp070363m

    Article  CAS  PubMed  Google Scholar 

  10. Olbert-Majkut A, Lundell J, Wierzejewska M (2014) J Phys Chem A 118(2):350. https://doi.org/10.1021/jp409982f

    Article  CAS  PubMed  Google Scholar 

  11. Car R, Parrinello M (1985) Phys Rev Lett 55:2471. https://doi.org/10.1103/PhysRevLett.55.2471

    Article  CAS  PubMed  Google Scholar 

  12. Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. http://www.cpmd.org/. CPMD, Copyright IBM Corp 1990–2015

  14. Troullier N, Martins JL (1991) Phys. Rev. B 43:1993. https://doi.org/10.1103/PhysRevB.43.1993

    Article  CAS  Google Scholar 

  15. Martyna GJ, Tuckerman ME (1999) J Chem Phys 110(6):2810. https://doi.org/10.1063/1.477923

    Article  CAS  Google Scholar 

  16. Ivanov SD, Grant IM, Marx D (2015) J Chem Phys 143(12):124304. https://doi.org/10.1063/1.4931052

    Article  CAS  PubMed  Google Scholar 

  17. Tuckerman ME, Parrinello M (1994) J Chem Phys 101(2):1302. https://doi.org/10.1063/1.467823

    Article  CAS  Google Scholar 

  18. Lee PM (2012) Bayesian statistics an introduction, 4th edn. Wiley, London

    Google Scholar 

  19. Neese F (2012) Wiley Interdiscip Rev: Comput Mol Sci 2(1):73. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  20. Tew DP, Mizukami W (2016) J Phys Chem A 120(49):9815. https://doi.org/10.1021/acs.jpca.6b09952

    Article  CAS  PubMed  Google Scholar 

  21. Maças EM, Lundell J, Pettersson M, Khriachtchev L, Fausto R, Räsänen M (2003) J Mol Spectrosc 219(1):70. https://doi.org/10.1016/S0022-2852(03)00018-3

    Article  CAS  Google Scholar 

  22. Alavi S, Taghikhani M (2012) Chem Phys 402:105. https://doi.org/10.1016/j.chemphys.2012.05.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The CSC - Center for Scientific Computing (Espoo, Finland) is thanked for the computational time allocated to this research. This research was supported by the Academy of Finland research project “Vibrational excitation induced chemistry” (Proj. No 286844), and we (P.D.) gratefully acknowledge financial support from the National Science Center Poland (2016/23/B/ST4/01099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teemu Järvinen.

Additional information

Published as part of the special collection of articles “First European Symposium on Chemical Bonding”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Järvinen, T., Lundell, J. & Dopieralski, P. Ab initio molecular dynamics study of overtone excitations in formic acid and its water complex. Theor Chem Acc 137, 100 (2018). https://doi.org/10.1007/s00214-018-2280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2280-6

Keywords

Navigation