Skip to main content
Log in

Intramolecular magnesium bonds in malonaldehyde-like systems: a critical view of the resonance-assisted phenomena

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Through the use of high-level G4-theory calculations, we have investigated the structure, stability, and bonding of a set of Mg derivatives formed by replacing the –OH group of malonaldehyde or only the hydrogen atom of this group by a –MgH group. To give insight into the resonance-assisted phenomenon, which might be involved in the stabilization of these compounds, we also included the corresponding saturated analogs in our survey. The effect of the rigidity of the molecular framework was considered by analyzing the Mg derivatives of (Z)-4-(hydroxymethylene)cyclobut-2-enone, obtained through the same substitutions mentioned above. The effect of replacing the carbonyl group by an imino group was also contemplated. In all cases, the global minimum is a cyclic conformer stabilized through the formation of rather strong intramolecular magnesium bonds. The strength of these interactions is directly related with the intrinsic basicity of the carbonyl group (or the imino group) and the intrinsic acidity of the –MgH group, rather than with a resonance-assisted phenomenon. As a matter of fact, for all the investigated systems, the conclusion is that resonance in the cyclic conformer is directly correlated with the strength of the intramolecular magnesium bond, and not vice versa. Interestingly, the strength and characteristics of these interactions for these Mg-containing derivatives are very similar to those of the corresponding Be-containing analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Scheme 5
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Margenau H, Kestner N (1969) Theory of inter-molecular force. Pergamon Press, New York

    Google Scholar 

  2. Kollman PA, Allen LC (1969) J Chem Phys 51:3286

    Article  CAS  Google Scholar 

  3. Vanthiel M, Becker ED, Pimentel GC (1957) J Chem Phys 27:486–490

    Article  CAS  Google Scholar 

  4. Hurtado M, Yáñez M, Herrero R, Guerrero A, Dávalos JZ, Abboud J-LM, Khater B, Guillemin JC (2009) Chem Eur J 15:4622–4629

    Article  CAS  PubMed  Google Scholar 

  5. Yáñez M, Sanz P, Mó O, Alkorta I, Elguero J (2009) J Chem Theor Comput 5:2763–2771

    Article  CAS  Google Scholar 

  6. Mó O, Yáñez M, Elguero J (1992) J Chem Phys 97:6628–6638

    Article  Google Scholar 

  7. Xantheas SS, Dunning TH (1993) J Chem Phys 98:8037–8040

    Article  CAS  Google Scholar 

  8. Mó O, Yáñez M, Alkorta I, Elguero J (2012) J Chem Theory Comput 8:2293–2300

    Article  CAS  PubMed  Google Scholar 

  9. Brea O, Alkorta I, Corral I, Mó O, Yáñez M, Elguero J (2017) in Intramolecular beryllium bonds. Further insights into resonance assistance phenomena, Vol (Ed. Novoa JJ), The Royal Society of Chemistry, London, pp 530–558

  10. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028

    Article  CAS  Google Scholar 

  11. Bertolasi V, Nanni L, Gilli P, Ferretti V, Gilli G, Issa YM, Sherif OE (1994) New J Chem 18:251–261

    CAS  Google Scholar 

  12. Bertolasi V, Gilli P, Ferretti V, Gilli G (1997) J Chem Soc Perkin Trans 2:945–952

    Article  Google Scholar 

  13. Mahmudov KT, Pombeiro AJL (2016) Chem Eur J 22:16356–16398

    Article  CAS  PubMed  Google Scholar 

  14. Wolters LP, Smits NWG, Guerra CF (2015) Phys Chem Chem Phys 17:1585–1592

    Article  CAS  PubMed  Google Scholar 

  15. Alkorta I, Elguero J, Mó O, Yáñez M, Bene JD (2004) Mol Phys 102:2563–2574

    Article  CAS  Google Scholar 

  16. Sanz P, Mó O, Yáñez M, Elguero J (2008) Chem Eur J 14:4225–4232

    Article  CAS  PubMed  Google Scholar 

  17. Romero-Fernandez MP, Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (2016) Tetrahedron 72:95–104

    Article  CAS  Google Scholar 

  18. Guevara-Vela JM, Romero-Montalvo E, Costales A, Pendas AM, Rocha-Rinza T (2016) Phys Chem Chem Phys 18:26383–26390

    Article  CAS  PubMed  Google Scholar 

  19. Guevara-Vela JM, Romero-Montalvo E, del Rio-Lima A, Martin Pendas A, Hernandez-Rodriguez M, Rinza TR (2017) Chem Eur J 23:16605–16611

    Article  CAS  PubMed  Google Scholar 

  20. Tama R, Mó O, Yáñez M, Montero-Campillo MM (2017) Theor Chem Acc 136:36

    Article  CAS  Google Scholar 

  21. Montero-Campillo MM, Sanz P, Mó O, Yáñez M, Alkorta I, Elguero J (2018) Phys Chem Chem Phys 20:2413–2420

    Article  CAS  PubMed  Google Scholar 

  22. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:84108

    Article  CAS  Google Scholar 

  23. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon Press, Oxford

    Google Scholar 

  24. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley-VCH, Weinheim

    Book  Google Scholar 

  25. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  26. Wiberg KB, Schleyer PV, Streitwieser A (1996) Can J Chem 74:892–900

    Article  Google Scholar 

  27. Savin A, Nesper R, Wengert S, Fäsler TF (1997) Angew Chem Int Ed Engl 36:1808–1832

    Article  CAS  Google Scholar 

  28. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang WT (2011) J Chem Theory Comput 7:625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Torvisco A, Ruhlandt-Senge K (2013) Top Organomet Chem 45:1–28

    Article  CAS  Google Scholar 

  30. Montero-Campillo MM, Mó O, Yáñez M, Alkorta I, Elguero J (2018) Chem Phys Chem. https://doi.org/10.1002/cphc.201800292

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Work supported by the Projects CTQ2015-63997-C2 and CTQ2016-76061-P of the Ministerio de Economía y Competitividad of Spain, FOTOCARBON-CM S2013/MIT-2841 of the Comunidad Autónoma de Madrid and by the COST Action CM1204 of the EU Framework Programme. Horizon 2020. Computational time at Centro de Computación Científica (CCC) of Universidad Autónoma de Madrid is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Yáñez.

Additional information

Published as part of the special collection of articles “CHITEL 2017 - Paris - France”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1045 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanz, P., Montero-Campillo, M.M., Mó, O. et al. Intramolecular magnesium bonds in malonaldehyde-like systems: a critical view of the resonance-assisted phenomena. Theor Chem Acc 137, 97 (2018). https://doi.org/10.1007/s00214-018-2274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2274-4

Keywords

Navigation