Skip to main content
Log in

The [3+2] cycloaddition reaction in CpRu(allyl)(acetylene)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The transition metal-mediated coupling of allyl and alkyne ligands to yield cyclopentadienyl and pentadienyl compounds has been studied theoretically using M06 DFT calculations using CpRu(allyl)(acetylene) as a representative example. We find that the first step in the mechanism is the formation of a 16-electron α, π-vinyl olefin intermediate, whereas the alternative, least-motion 3+2 cycloaddition via a concerted process was calculated to lie at a prohibitively high energy and has the characteristics of a symmetry forbidden reaction. The 3+2 concerted path is shown to be unlikely for η3-allyl complexes in general. There are two competing mechanisms, which lead to Cp2Ru + H2 or CpRu(η5-pentadienyl). The pentadienyl product is predicted to form by either the rearrangement of the α, π-vinyl olefin complex or an electrocyclic ring opening of a cyclopentadiene intermediate. The alternative mechanism involves a ring closure of the α, π-vinyl olefin intermediate to yield CpRu(H)(cyclopentadiene). Four mechanistic scenarios were investigated for the reductive elimination of H2 to give Cp2Ru. The lowest energy process occurs via CpRu(H)2(η3-Cp). The other three possibilities are symmetry forbidden. It is shown that the partitioning of pentadienyl versus cyclopentadienyl products depends on the electronic characteristics of the metal. As the transition metal becomes more electron rich, the pathway to the pentadienyl product becomes more favored. Calculations on CpCo(π-allyl)(acetylene)+ and CpTc(π-allyl)(acetylene)− are in agreement with this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2 
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 2

Similar content being viewed by others

References

  1. Welker ME (1992) Chem Rev 92:97–112

    Article  CAS  Google Scholar 

  2. Omae I (2008) Appl Organomet Chem 22:149–166

    Article  CAS  Google Scholar 

  3. Ylijoki KEO, Stryker JM (2013) Chem Rev 113:2244–2266

    Article  CAS  Google Scholar 

  4. Mazzoni R, Salmi M, Zanotti V (2012) Chem Eur J 18:10174–10194

    Article  CAS  Google Scholar 

  5. Liyuan L, Astruc D (2011) Coord Chem Rev 255:2933–2945

    Article  Google Scholar 

  6. Xing Y, Wang N.-X (2012) ibid 256:938–952

  7. Chin CS, Won G, Chong D, Kim M, Lee H (2002) Acc Chem Res 35:218–225

    Article  CAS  Google Scholar 

  8. Harmata M (2010) Chem Commun 46:8904–8922

    Article  CAS  Google Scholar 

  9. Gothelf KV, Jorgensen KA (1998) Chem Rev 98:863–910

    Article  CAS  Google Scholar 

  10. Goodall GW, Hayes W (2006) Chem Soc Rev 35:280–312

    Article  CAS  Google Scholar 

  11. Harmata M (2010) Chem Commun 46:8886–8903

    Article  CAS  Google Scholar 

  12. Moyano A, Rios R (2011) Chem Rev 111:4703–4832

    Article  CAS  Google Scholar 

  13. Lutsenko ZL, Aleksandrov GG, Petrovskii PV, Shubina ES, Andrianov VG, Struchkov YT, Rubezhov AZ (1985) J Organomet Chem 281:349–364

    Article  CAS  Google Scholar 

  14. Schwiebert KE, Stryker JM (1993) Organometallics 12:600–602

    Article  CAS  Google Scholar 

  15. Older CM, Stryker JM (2000) Organometallics 19:2661–2663

    Article  CAS  Google Scholar 

  16. Older CM, Stryker JM (2000) Organometallics 19:3266–3268

    Article  CAS  Google Scholar 

  17. Older CM, McDonald R, Stryker JM (2005) J Am Chem Soc 127:14202–14203

    Article  CAS  Google Scholar 

  18. Barrado G, Hricko MM, Miguel D, Riera V, Wally H (1998) Organometallics 17:820–826

    Article  CAS  Google Scholar 

  19. Betz P, Jolly PW, Krüger C, Zakrzewski U (1991) Organometallics 10:3520–3525

    Article  CAS  Google Scholar 

  20. Trost BM, Indolese I (1993) J Am Chem Soc 115:4361–4362

    Article  CAS  Google Scholar 

  21. Nehl H (1993) Chem Ber 126:1519–1527

    Article  CAS  Google Scholar 

  22. Fischer RA, Herrmann WA (1989) J Organomet Chem 377:275–279

    Article  CAS  Google Scholar 

  23. Green M, Taylor SH (1975) J Chem Soc Dalton Trans 12:1142–1149

    Article  Google Scholar 

  24. Sanchez-Castro ME, Ramirez-Monroy A, Paz-Sandoval MA (2005) Organometallics 24:2875–2888

    Article  CAS  Google Scholar 

  25. Busetto L, Marchetti F, Mazzoni R, Salmi M, Zacchini S, Zanotti V (2009) Organometallics 28:3465–3472

    Article  CAS  Google Scholar 

  26. Salmi M, Busetto L, Mazzoni R, Zacchini S, Zanotti V (2011) Organometallics 30:1175–1181

    Article  CAS  Google Scholar 

  27. Mazzoni R, Salmi M, Zacchini S, Busetto L, Zanotti V (2014) J Organomet Chem 751:336–342

    Article  CAS  Google Scholar 

  28. Older CM, Stryker JM (1998) Organometallics 17:5596–5598

    Article  CAS  Google Scholar 

  29. Nicholls JC, Spencer JL (1994) Organometallics 13:1781–1787

    Article  CAS  Google Scholar 

  30. Cracknell RB, Nicholls JC, Spencer JL (1996) Organometallics 15:446–448

    Article  CAS  Google Scholar 

  31. Schwiebert KE, Stryker JM (1995) J Am Chem Soc 117:8275–8276

    Article  CAS  Google Scholar 

  32. Dzwiniel TL, Etkin N, Stryker JM (1999) J Am Chem Soc 121:10640–10641

    Article  CAS  Google Scholar 

  33. Etkin N, Dzwiniel TL, Schwiebert KE, Stryker JM (1998) J Am Chem Soc 120:9702–9703

    Article  CAS  Google Scholar 

  34. Ylijoki KEO, Stryker JM (2012) Chem Rev 113:2244–2266

    Article  Google Scholar 

  35. Ramful CD, Konway ZE, Boudreau S, Areephong J, Robertson KN, Ylijoki KEO (2016) J Organomet Chem 824:166–171

    Article  CAS  Google Scholar 

  36. Ylijoki KEO, Witherell RD, Kirk AD, Böcklein S, Lofstrand VA, McDonald R, Ferguson MJ, Stryker JM (2009) Organometallics 28:6807–6822

    Article  CAS  Google Scholar 

  37. Witherell RD, Ylijoki KEO, Stryker JM (2008) J Am Chem Soc 130:2176–2177

    Article  CAS  Google Scholar 

  38. Ylijoki KEO, Kirk AD, Böcklein S, Witherell RD, Stryker JM (2015) Organometallics 34:3335–3357

    Article  CAS  Google Scholar 

  39. Ylijoki KEO, Budzelaar PHM, Stryker JM (2012) Chem Eur J 18:9894–9900

    Article  CAS  Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  41. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  42. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  43. Hay JR, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  44. Roy LE, Hay JP, Martin RL (2008) J Chem Theory Comput 4:1029–1031

    Article  CAS  Google Scholar 

  45. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  46. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  47. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  48. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104–154122

    Article  Google Scholar 

  49. Hratchian HP, Schlegel HB (2005) J Chem Theory Comput 1:61–69

    Article  CAS  Google Scholar 

  50. Gaussian 09, Revision B.01 (2010) Gaussian, Inc., Wallingford CT, 2010. The full citation for this reference is given in the Supplementary Material section

  51. Schilling BER, Hoffmann R, Lichtenberger DL (1979) J Am Chem Soc 101:585–591

    Article  CAS  Google Scholar 

  52. Silvestre J, Hoffmann R (1985) Helv Chim Acta 68:1461–1506

    Article  CAS  Google Scholar 

  53. Padwa A (1984) 1,3-dipolar cycloaddition chemistry, 1st edn. Wiley, New York

    Google Scholar 

  54. Bigot B, Devaquet A, Turro NJ (1981) J Am Chem Soc 103:6

    Article  CAS  Google Scholar 

  55. Kreiter CG, Koch EC, Frank W, Reiss G (1994) Inorg Chim Acta 220:77–83

    Article  CAS  Google Scholar 

  56. Kreiter CG, Fiedler C, Frank W, Reiss GJ (1995) Chem Ber 128:515–518

    Article  CAS  Google Scholar 

  57. Kreiter CG, Fiedler C, Frank W, Reiss GJ (1995) J Organomet Chem 490:125–131

    Article  CAS  Google Scholar 

  58. Kreiter CG, Koch EC, Frank W, Reiss GJ (1996) Z Naturforsch 51B:1473–1485

    Google Scholar 

  59. Chen W, Chung HJ, Wang C, Sheridan JB, Cote ML, Lalancette RA (1996) Organometallics 15:3337–3344

    Article  CAS  Google Scholar 

  60. Chung HJ, Sheridan JB, Cote ML, Lalancette RA (1996) Organometallics 15:4575–4585

    Article  CAS  Google Scholar 

  61. Wang C, Sheridan JB, Chung HJ, Cote ML, Lalancette RA, Rheingold AL (1994) J Am Chem Soc 116:8966–8972

    Article  CAS  Google Scholar 

  62. Albright TA, Burdett JK, Whangbo MH (2013) Orbital interactions in chemistry, 2nd edn. Wiley, New York, pp 549–552

    Book  Google Scholar 

  63. Pinhas AR, Carpenter BK (1980) J Chem Soc Chem Commun 1:15–17

    Article  Google Scholar 

  64. Tantillo DJ, Hoffmann R (2001) J Am Chem Soc 123:9855–9859

    Article  CAS  Google Scholar 

  65. Tantillo DJ, Hoffmann R (2001) Helv Chim Acta 84:1396–1404

    Article  CAS  Google Scholar 

  66. Hirshfeld FL (1977) Theor Chim Act 44:129–138

    Article  CAS  Google Scholar 

  67. Davidson ER, Chakravorty S (1992) Theor Chim Acta 83:319–330

    Article  CAS  Google Scholar 

  68. Guerra CF, Handgraaf JW, Baerends EJ, Bickelhaupt FM (2004) J Comput Chem 25:189–210

    Article  CAS  Google Scholar 

  69. Kirss RU (1992) Organometallics 11:497–499

    Article  CAS  Google Scholar 

  70. Kirss RU, Quazi A, Lake CH, Churchill MR (1993) Organometallics 12:4145–4150

    Article  CAS  Google Scholar 

  71. Mann BE, Manning PW, Spencer CM (1986) J Organomet Chem 312:C64–C66

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Computational support from the University of St. Thomas and discussions with Professor Thomas Albright are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natalie M. Frangi or Chirine Soubra-Ghaoui.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frangi, N.M., Soubra-Ghaoui, C. The [3+2] cycloaddition reaction in CpRu(allyl)(acetylene). Theor Chem Acc 136, 83 (2017). https://doi.org/10.1007/s00214-017-2111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2111-1

Keywords

Navigation