Skip to main content
Log in

A comparison of singlet and triplet states for one- and two-dimensional graphene nanoribbons using multireference theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This study examines the radical nature and spin symmetry of the ground state of the quasi-linear acene and two-dimensional periacene series. For this purpose, high-level ab initio calculations have been performed using the multireference averaged quadratic coupled cluster theory and the COLUMBUS program package. A reference space consisting of restricted and complete active spaces is taken for the π-conjugated space, correlating 16 electrons with 16 orbitals with the most pronounced open-shell character for the acenes and a complete active-space reference approach with eight electrons in eight orbitals for the periacenes. This reference space is used to construct the total configuration space by means of single and double excitations. By comparison with more extended calculations, it is shown that a focus on the π space with a 6-31G basis set is sufficient to describe the major features of the electronic character of these compounds. The present findings suggest that the ground state is a singlet for the smaller members of these series, but that for the larger ones, singlet and triplet states are quasi-degenerate. Both the acenes and periacenes exhibit significant polyradical character beyond the traditional diradical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Geim A, Novoselov K (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  2. Bendikov M, Wudl F, Perepichka D (2004) Chem Rev 104:4891

    Article  CAS  Google Scholar 

  3. Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A (2005) Proc Natl Acad Sci 102:10451

    Article  CAS  Google Scholar 

  4. Lu G, Yu K, Wen Z, Chen J (2013) Nanoscale 5:1353

    Article  CAS  Google Scholar 

  5. Son Y, Cohen M, Louie S (2006) Nature 444:347

    Article  CAS  Google Scholar 

  6. Angliker H, Rommel E, Wirz J (1982) Chem Phys Lett 87:208

    Article  CAS  Google Scholar 

  7. Mondal R, Shah B, Neckers D (2006) J Am Chem Soc 128:9612

    Article  CAS  Google Scholar 

  8. Tonshoff C, Bettinger H (2010) Angew Chem Int Ed 49:4125

    Article  Google Scholar 

  9. Zade SS, Bendikov M (2010) Angew Chem Int Edit 49:4012

    Article  CAS  Google Scholar 

  10. Bendikov M, Duong H, Starkey K, Houk K, Carter E, Wudl F (2004) J Am Chem Soc 126:7416

    Article  CAS  Google Scholar 

  11. Jiang D, Dai S (2008) J Phys Chem A 112:332

    Article  CAS  Google Scholar 

  12. Rivero P, Jimenez-Hoyos C, Scuseria G (2013) J Phys Chem B 117:12750

    Article  CAS  Google Scholar 

  13. Zimmerman P, Bell F, Casanova D, Head-Gordon M (2011) J Am Chem Soc 133:19944

    Article  CAS  Google Scholar 

  14. Hod O, Barone V, Scuseria G (2008) Chem Phys Lett 466:72

    Article  Google Scholar 

  15. Jiang D, Sumpter B, Dai S (2007) J Chem Phys 126:134701

    Article  Google Scholar 

  16. Nagai H, Nakano M, Yoneda K, Kishi R, Takahashi H, Shimizu A, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2010) Chem Phys Lett 489:212

    Article  CAS  Google Scholar 

  17. Barone V, Hod O, Peralta J, Scuseria G (2011) Acc Chem Res 44:269

    Article  CAS  Google Scholar 

  18. Jiang DE, Dai S (2008) Chem Phys Lett 466:72

    Article  CAS  Google Scholar 

  19. Hachmann J, Dorando J, Aviles M, Chan G (2007) J Chem Phys 127:134309

    Article  Google Scholar 

  20. Mizukami W, Kurashige Y, Yanai T (2012) J Chem Theory Comput 9:401–407

    Article  Google Scholar 

  21. Gidofalvi G, Mazziotti D (2008) J Chem Phys 129:134108

    Article  Google Scholar 

  22. Pelzer K, Greenman L, Gidofalvi G, Mazziotti D (2011) J Phys Chem A 115:5632

    Article  CAS  Google Scholar 

  23. Casanova D, Head-Gordon M (2009) Phys Chem Chem Phys 11:9779

    Article  CAS  Google Scholar 

  24. Hajgato B, Huzak M, Deleuze M (2011) J Phys Chem A 115:9282

    Article  CAS  Google Scholar 

  25. Hajgato B, Szieberth D, Geerlings P, de Proft F, Deleuze M (2009) J Chem Phys 131:22

    Article  Google Scholar 

  26. Plasser F, Pasalic H, Gerzabek M, Libisch F, Reiter R, Burgdorfer J, Muller T, Shepard R, Lischka H (2013) Angew Chem Int Ed 52:2581

    Article  CAS  Google Scholar 

  27. Wassmann T, Seitsonen AP, Saitta AM, Lazzeri M, Mauri F (2010) J Am Chem Soc 132:3440

    Article  CAS  Google Scholar 

  28. Balaban AT, Klein DJ (2009) J Phys Chem C 113:19123

    Article  CAS  Google Scholar 

  29. Pisani L, Chan JA, Montanari B, Harrison NM (2007) Phys Rev B 75:064418

    Article  Google Scholar 

  30. Purushotharman B, Bruzek M, Parkin S, Miller A, Anthony J (2011) Angew Chem Int Ed 50:7013

    Article  Google Scholar 

  31. Houk K, Lee P, Nendel M (2001) J Org Chem 66:5517

    Article  CAS  Google Scholar 

  32. Rayne S, Forest K (2011) Comput Theor Chem 976:105

    Article  CAS  Google Scholar 

  33. Chakraborty H, Shukla A (2013) J Phys Chem A 117:14220

    Article  CAS  Google Scholar 

  34. Knippenberg S, Starcke JH, Wormit M, Dreuw A (2010) Mol Phys 108:2801

    Article  CAS  Google Scholar 

  35. Szalay P, Bartlett R (1993) Chem Phys Lett 214:481

    Article  CAS  Google Scholar 

  36. Antol I, Eckert-Maksic M, Lischka H, and Maksic Z (2007) Eur J Org Chem 3173

  37. Wang E, Parish C, Lischka H (2008) J Chem Phys 129:044306

    Article  Google Scholar 

  38. Szalay P, Muller T, Gidofalvi G, Lischka H, Shepard R (2012) Chem Rev 112:108

    Article  CAS  Google Scholar 

  39. Takatsuka K, Fueno T, Yamaguchi K (1978) Theor Chim Acta 48:175

    Article  CAS  Google Scholar 

  40. Staroverov V, Davidson E (2000) Chem Phys Lett 330:161

    Article  CAS  Google Scholar 

  41. Head-Gordon M (2003) Chem Phys Lett 372:508

    Article  CAS  Google Scholar 

  42. Moller C, Plesset M (1934) Phys Rev 46:0618

    Article  CAS  Google Scholar 

  43. Vahtras O, Almlof J, Feyereisen M (1993) Chem Phys Lett 213:514

    Article  CAS  Google Scholar 

  44. Weigend F, Haser M (1997) Theor Chem Acc 97:331

    Article  CAS  Google Scholar 

  45. Schafer A, Horn H, Ahlrichs R (1997) J Chem Phys 97:2571

    Article  Google Scholar 

  46. Luken W (1978) Chem Phys Lett 58:421

    Article  CAS  Google Scholar 

  47. Hehre W, Ditchfield R, Pople J (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  48. Hosteny R, Dunning T Jr, Gilman R, Pipano A, Shavitt I (1975) J Chem Phys 62:4764

    Article  CAS  Google Scholar 

  49. Becke A (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  50. Perdew J (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  51. Haser M, Ahlrichs R (1989) J Comput Chem 10:104

    Article  Google Scholar 

  52. Treutler O, Ahlrichs R (1995) J Chem Phys 102:346

    Article  CAS  Google Scholar 

  53. Lischka H, Shepard R, Pitzer R, Shavitt I, Dallos M, Muller T, Szalay P, Seth M, Kedziora G, Yabushita S, Zhang Z (2001) Phys Chem Chem Phys 3:664

    Article  CAS  Google Scholar 

  54. Lischka H, Shepard R, Shavitt I, Pitzer R, Dallos M, Müller T, Szalay P, Brown F, Ahlrichs R, Böhm H, Chang A, Comeau D, Gdanitz R, Dachsel H, Ehrhardt C, Ernzerhof M, Höchtl P, Irle S, G K, Kovar T, Parasuk V, Pepper M, Scharf P, Schiffer H, Schindler M, Schüler M, Seth M, Stahlberg E, Zhao J-G, Yabushita S, Z Z, Barbatti M, Matsika S, Schuurmann M, Yarkony D, Brozell S, Beck E, Blaudeau J-P, Ruckenbauer M, Sellner B, Plasser F, Szymczak J (2012) COLUMBUS, an ab initio electronic structure program, release 7.0

  55. Lischka H, Muller T, Szalay PG, Shavitt I, Pitzer RM, Shepard R (2011) Wires Comput Mol Sci 1:191

    Article  CAS  Google Scholar 

  56. Birks J (1970) Photophysics of aromatic molecules. Wiley, London

    Google Scholar 

  57. Schiedt J, Weinkauf R (1997) Chem Phys Lett 266:201

    Article  CAS  Google Scholar 

  58. Sabbatini N, Indelli M, Gandolfi M, Balzani V (1982) J Phys Chem 86:3585

    Article  CAS  Google Scholar 

  59. Burgos J, Pope M, Swendberg C, Alfano R (1977) Phys Status Solidi B 83:249

    Article  CAS  Google Scholar 

  60. Wang J, Zubarev D, Philpott M, Vukovic S, Lester W, Cui T, Kawazoe Y (2010) Phys Chem Chem Phys 12:9839–9844

    Article  CAS  Google Scholar 

  61. Nakada K, Fujita M, Dresselhaus G, Dresselhaus M (1996) Phys Rev B 54:17954

    Article  CAS  Google Scholar 

  62. Cui Z, Lischka H, Mueller T, Plasser F, Kertesz M (2013) Chem Phys Chem. doi:10.1002/cphc.201300784

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under Project No. CHE-1213263, by the Austrian Science Fund (SFB F41, ViCoM, and Project P20893-N19), and the Robert A. Welch Foundation under Grant No. D-0005. Shawn Horn is funded by a research fellowship at Texas Tech University. Computer time at the Vienna Scientific Cluster (Project Nos. 70151 and 70376) and by the Chemistry Computational Cluster of Texas Tech University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lischka.

Additional information

Dedicated to the memory of Professor Isaiah Shavitt and published as part of the special collection of articles celebrating his many contributions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 634 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, S., Plasser, F., Müller, T. et al. A comparison of singlet and triplet states for one- and two-dimensional graphene nanoribbons using multireference theory. Theor Chem Acc 133, 1511 (2014). https://doi.org/10.1007/s00214-014-1511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1511-8

Keywords

Navigation