Skip to main content
Log in

A computational study of the nonlinear optical properties of carbazole derivatives: theory refines experiment

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The nonlinear optical (NLO) properties of N-ethyl dicyanocarbazole (1), N-ethyl cyanoethylacetatecarbazole (2), and N-ethyl dimethylacetatecarbazole (3) are studied with traditional hybrid and long-range corrected (LC) density functional theory (DFT) methods. The carbazoles are predicted to have planar structures with a high degree of π-conjugation and charge transfer, resulting in measurable NLO responses. The DFT data here calculated allow us to refine and correct previously reported experimental hyperpolarizabilities for these compounds. Experimental UV–vis absorption bands (related to hyperpolarizabilities estimated via solvatochromism) are also accurately reproduced by LC-DFT when using gap fitting schemes. The effects of different functionals on the HOMO–LUMO energy gaps and eventually on the total hyperpolarizabilities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weinberger P (2008) Philos Mag Lett 88:897

    Article  CAS  Google Scholar 

  2. Hirshberg Y (1956) J Am Chem Soc 78:2304

    Article  CAS  Google Scholar 

  3. Maiman TH (1960) Nature 187:439

    Article  Google Scholar 

  4. Franken PA, Hill AE, Peters CW, Weinreich G (1961) Phys Rev Lett 7:118

    Article  Google Scholar 

  5. Marder SR, Sohn JE, Stucky GD (1991) Materials for non-linear optics: chemical perspectives, ACS symposium series 45, Washington, DC

  6. Boyd RW (1992) Nonlinear optics. Academic Press, New York

    Google Scholar 

  7. Marder SR (2006) Chem Commun 2:131

    Article  Google Scholar 

  8. Irie M (2000) Chem Rev 100:1685

    Article  CAS  Google Scholar 

  9. Kawata S, Kawata Y (2000) Chem Rev 100:1777

    Article  CAS  Google Scholar 

  10. Tian H, Yang S (2004) Chem Soc Rev 33:85

    Article  CAS  Google Scholar 

  11. Dvornikov AS, Walker EP, Rentzepis PM (2009) J Phys Chem A 113:13633

    Article  CAS  Google Scholar 

  12. Sekino H, Bartlett RJ (1993) J Chem Phys 98:3022

    Article  CAS  Google Scholar 

  13. Norman P, Ruud K (2006) Microscopic theory of nonlinear optics. In: Papadopoulos MG, Sadlej AJ, Leszczynski J (eds) Nonlinear optical properties of matter: from molecules to condensed phases. Springer, The Netherlands

  14. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, England

    Google Scholar 

  15. Bishop DM, Kirtman B (1991) J Chem Phys 95:2646

    Article  CAS  Google Scholar 

  16. Brédas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Chem Rev 94:243

    Article  Google Scholar 

  17. Savin A, Flad H (1995) Int J Quantum Chem 56:327

    Article  CAS  Google Scholar 

  18. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  19. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  20. Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125:074106

    Article  Google Scholar 

  21. Vydrov OA, Scuseria GE (2006) J Chem Phys. 125:234109

    Article  Google Scholar 

  22. Jacquemin D, Perpète EA, Vydrov OA, Scuseria GE, Adamo C (2007) J Chem Phys 127:094102

    Article  Google Scholar 

  23. Champagne B, Perpete EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489

    Article  CAS  Google Scholar 

  24. Champagne B, Perpete EA, Jacquemin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) J Chem Phys 104:4755

    Article  CAS  Google Scholar 

  25. Loboda O, Zaleśny R, Avramopoulos A, Luis JM, Kirtman B, Tagmatarchis N, Reis H, Papadopoulos MG (2009) J Phys Chem A 113:1159

    Article  CAS  Google Scholar 

  26. van Faassen M, de van BoeijR. Leeuwen PL, Berger JA, Snijders JG (2003) J. Chem. Phys. 118:1044

    Article  Google Scholar 

  27. Kirtman B, Lacivita V, Dovesi R, Reis H (2011) J Chem Phys 135:154101

    Article  Google Scholar 

  28. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425

    Article  CAS  Google Scholar 

  29. Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122:234111

    Article  Google Scholar 

  30. Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) J Chem Theory Comput 4:123

    Article  CAS  Google Scholar 

  31. Perpète EA, Jacquemin D, Adamo C, Scuseria GE (2008) Chem Phys Lett 456:101

    Article  Google Scholar 

  32. Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) Chem Phys Lett 465:226

    Article  CAS  Google Scholar 

  33. Song J, Watson MA, Sekino H, Hirao K (2008) J Chem Phys 129:024117

    Article  Google Scholar 

  34. Zaleśny R, Bulik IW, Bartkowiak W, Luis JM, Avramopoulos A, Papadopoulos MG, Krawczyk P (2010) J Chem Phys 133:244308

    Article  Google Scholar 

  35. de Wergifosse M, Champagne B (2011) J Chem Phys 134:074113

    Article  Google Scholar 

  36. Jacquemin D, Perpète EA, Medved M, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:191108

    Article  Google Scholar 

  37. Nguyen KA, Rogers JE, Slagle JE, Day PN, Kannan R, Tan L, Fleitz PA, Pachter R (2006) J Phys Chem A 110:13172

    Article  CAS  Google Scholar 

  38. Garza AJ, Scuseria GE, Khan SB, Asiri AM (2013) Chem Phys Lett 575:122

    Article  CAS  Google Scholar 

  39. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664

    Article  CAS  Google Scholar 

  40. Hurst M, Munn RW (1989) Theory of molecular opto-electronics. VI. Comparison between nitroanilines. In: Hann RA, Bloor D (eds) Organic materials for nonlinear optics. The Royal Society of Chemistry, London

  41. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195

    Article  CAS  Google Scholar 

  42. Ramakrishna G, Goodson T III (2007) J Phys Chem A 111:993

    Article  CAS  Google Scholar 

  43. Chakrabarti S, Ruud K (2009) Phys Chem Chem Phys 11:2592

    Article  CAS  Google Scholar 

  44. Asiri AM, Khan SA, Al-Amoudi MS, Alamry KA (2012) Bull Korean Chem Soc 33(6):1900

    Article  CAS  Google Scholar 

  45. Paley MS, Harris JM (1989) J Org Chem 54:3774

    Article  CAS  Google Scholar 

  46. Deguan L, Ratner MA (1988) J Am Chem Soc 110:1707

    Article  Google Scholar 

  47. Song H, Chem Y, Zheng X, Ying B (2001) Spectrochim Acta Part A 57:1717

    Article  CAS  Google Scholar 

  48. Reis H (2006) J Chem Phys 125:014506

    Article  CAS  Google Scholar 

  49. Willets A, Rice JE, Burland DM, Shelton D (1992) J Chem Phys 97:7590

    Article  Google Scholar 

  50. Stäehlin M, Moylan CR, Burland DM, Willets A, Rice JE, Shelton DP, Donley EA (1993) J Chem Phys 98:5595

    Article  Google Scholar 

  51. Le Bahers T, Adamo C, Ciofini I (2011) J Chem Theory Comput 7:2498

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

  53. Suponitsky KY, Tafur S, Masunov AE (2008) J Chem Phys 129:044109

    Article  Google Scholar 

  54. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee Mission KS

  55. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

  56. Kaatz P, Donley EA, Shelton DP (1997) J Chem Phys 108:849

    Google Scholar 

  57. Sim F, Chin S, Dupuis M, Rice JE (1993) J Phys Chem 97:1158

    Article  CAS  Google Scholar 

  58. Thanthiriwatte KS, Nalinde Silva KM (2002) Theochem 617:169

    Article  CAS  Google Scholar 

  59. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49:1691

    Article  CAS  Google Scholar 

  60. Kleinman L (1997) Phys Rev B 56:12042

    Article  CAS  Google Scholar 

  61. Perdew JP, Levy M (1997) Phys Rev B 56:16021

    Article  CAS  Google Scholar 

  62. Kleinman L (1997) Phys Rev B 56:16029

    Article  CAS  Google Scholar 

  63. Garza AJ, Osman OI, Scuseria GE, Wazzan NA, Khan SB, Asiri AM (2013) Theor Chem Acc 132:1384

    Article  Google Scholar 

  64. Garza AJ, Osman OI, Scuseria GE, Wazzan NA, Khan SB, Asiri AM (2013) Comp Theor Chem 1022:82

    Article  CAS  Google Scholar 

  65. Terranova U, Bowler DR (2013) J Chem Theory Comput 9:3181

    Article  CAS  Google Scholar 

  66. Lippert E (1955) Z Naturforsch 10:541

    Google Scholar 

  67. Siddlingeshwar B, Hanagodimath SM (2009) Spectrochim Acta Part A Mol Biomol Spectrosc 72:490

    Article  CAS  Google Scholar 

  68. Bakhshiev NG (1964) Opt Spektrosk 16:821

    CAS  Google Scholar 

  69. Kawski A, Bilot L (1964) Acta Phys Pol 26:41

    CAS  Google Scholar 

  70. Kawski A (1966) Acta Phys Pol 29:507

    CAS  Google Scholar 

  71. Chamma A, Viallet P (1970) CR Acad Sci Paris Ser C 270:1901

    CAS  Google Scholar 

  72. Raikar US, Renuka CG, Nadaf YF, Mulimani BG, Karguppikar AM, Soudagar MK (2006) Spectrochim Acta Part A Mol Biomol Spectrosc 65:673

    Article  CAS  Google Scholar 

  73. Stein T, Kronik L, Baer R (2009) J Am Chem Soc 131:2818

    Article  CAS  Google Scholar 

  74. Stein T, Kronik L, Baer R (2009) J Chem Phys 131:244119

    Article  Google Scholar 

  75. Karolewski A, Stein T, Kümmel S (2011) J Chem Phys 134:151101

    Article  CAS  Google Scholar 

  76. Pandey L, Doiron C, Sears JS, Brédas J (2012) Phys Chem Chem Phys 14:14243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by King Abdulaziz University, under Grant No. (21-3-1432/HiCi). The authors, therefore, acknowledge technical and financial support of KAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo E. Scuseria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garza, A.J., Osman, O.I., Wazzan, N.A. et al. A computational study of the nonlinear optical properties of carbazole derivatives: theory refines experiment. Theor Chem Acc 133, 1458 (2014). https://doi.org/10.1007/s00214-014-1458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1458-9

Keywords

Navigation