Skip to main content
Log in

A model-integrated computing approach to nanomaterials simulation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The functionalization of nanoparticles with polymers to form “tethered nanoparticles” (TNPs) is a promising approach to control the structure and properties of nanomaterials. However, the vast landscape of possible building blocks makes predicting the final behavior of tethered nanoparticles a priori a challenging task. Concepts from the computer science field of modeling integrated computing may provide an efficient means to optimize this complex design problem. Here, we investigate the use of model integrated computing for the simulation of tethered nanoparticles. We outline our development of a “meta-programming” tool that enables the creation of a domain specific modeling language for tethered nanoparticle simulation and also provides tools for the creation and synthesis of simulation workflows. To test these tools and provide insight into their behavior, we report calculations of the vapor–liquid equilibrium of tethered nanoparticles as a function of grafting density and grafting length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Whitesides GM, Grzybowski B (2002) Science 295(5564):2418

    Article  CAS  Google Scholar 

  2. Knischka R, Dietsche F, Hanselmann R, Frey H, Mülhaupt R, Lutz PJ (1999) Langmuir 15(14):4752

    Article  CAS  Google Scholar 

  3. Boal AK, Ilhan F, DeRouchey JE, Thurn-Albrecht T, Russell TP, Rotello VM (2000) Nature 404(6779):746

    Article  CAS  Google Scholar 

  4. Storhoff JJ, Elghanian R, Mirkin CA, Letsinger RL (2002) Langmuir 18(17):6666

    Article  CAS  Google Scholar 

  5. Westenhoff S, Kotov NA (2002) J Am Chem Soc 124(11):2448

    Article  CAS  Google Scholar 

  6. Waddon AJ, Zheng L, Farris RJ, Coughlin EB (2002) Nano Lett 2(10):1149

    Article  CAS  Google Scholar 

  7. Song T, Dai S, Tam KC, Lee SY, Goh SH (2003) Langmuir 19(11):4798

    Article  CAS  Google Scholar 

  8. Song T, Dai S, Tam KC, Lee SY, Goh SH (2003) Polymer 44(8):2529

    Article  CAS  Google Scholar 

  9. Park SJ, Lazarides AA, Storhoff JJ, Pesce L, Mirkin CA (2004) J Phys Chem B 108(33):12375

    Article  CAS  Google Scholar 

  10. Tokareva I, Hutter E (2004) J Am Chem Soc 126(48):15784

    Article  CAS  Google Scholar 

  11. Sung KM, Mosley DW, Peelle BR, Zhang S, Jacobson JM (2004) J Am Chem Soc 126(16):5064

    Article  CAS  Google Scholar 

  12. Nie ZH, Fava D, Kumacheva E, Zou S, Walker GC, Rubinstein M (2007) Nat Mater 6(8):609

    Article  CAS  Google Scholar 

  13. Hill HD, Macfarlane RJ, Senesi AJ, Lee B, Park SY, Mirkin CA (2008) Nano Lett 8(8):2341

    Article  CAS  Google Scholar 

  14. Akcora P, Liu H, Kumar SK, Moll J, Li Y, Benicewicz BC, Schadler LS, Acehan D, Panagiotopoulos AZ, Pryamitsyn V, Ganesan V, Ilavsky J, Thiyagarajan P, Colby RH, Douglas JF (2009) Nat Mater 8(4):354

    Article  CAS  Google Scholar 

  15. Zhang ZL, Horsch M, Lamm MH, Glotzer SC (2003) Nano Lett 3(10):1341

    Article  CAS  Google Scholar 

  16. Glotzer SC, Horsch MA, Iacovella CR, Zhang ZL, Chan ER, Zhang X (2005) Curr Opin Colloid Interface Sci 10(5–6):287

    Article  CAS  Google Scholar 

  17. Kumar SK, Krishnamoorti R (2010) Annu Rev Chem Biomol Eng 1(1):37

    Article  CAS  Google Scholar 

  18. Jayaraman A, Schweizer KS (2008) J Chem Phys 128(16):164904

    Article  Google Scholar 

  19. Pryamtisyn V, Ganesan V, Panagiotopoulos AZ, Liu H, Kumar SK (2009) J Chem Phys 131(22):221102

    Article  Google Scholar 

  20. Martin TB, Seifpour A, Jayaraman A (2011) Soft Matter 7:5952

    Article  CAS  Google Scholar 

  21. Horsch MA, Zhang ZL, Glotzer SC (2005) Phys Rev Lett 95(5):056105

    Article  Google Scholar 

  22. Nguyen TD, Glotzer SC (2009) Small 5(18):2092

    Article  CAS  Google Scholar 

  23. Iacovella CR, Horsch MA, Zhang Z, Glotzer SC (2005) Langmuir 21(21):9488

    Article  CAS  Google Scholar 

  24. Chan ER, Zhang X, Lee CY, Neurock M, Glotzer SC (2005) Macromolecules 38:14

    Google Scholar 

  25. Chan ER, Ho LC, Glotzer SC (2006) J Chem Phys 125(6):064905

    Article  Google Scholar 

  26. Iacovella CR, Keys AS, Horsch MA, Glotzer SC (2007) Phys Rev E 75(4):040801

    Article  Google Scholar 

  27. Iacovella CR, Horsch MA, Glotzer SC (2008) J Chem Phys 129:044902

    Article  Google Scholar 

  28. Iacovella CR, Glotzer SC (2009) Nano Lett 9(3):1206

    Article  CAS  Google Scholar 

  29. Iacovella CR, Glotzer SC (2009) Soft Matter 5:4492

    Article  CAS  Google Scholar 

  30. Iacovella CR, Keys AS, Glotzer SC (2011) Proc Nat Acad Sci 108(52):20935

    Article  CAS  Google Scholar 

  31. Chremos A, Panagiotopoulos AZ (2011) Phys Rev Lett 107:105503

    Article  Google Scholar 

  32. Li TI, Sknepnek R, Macfarlane RJ, Mirkin CA, Olvera de la Cruz M (2012) Nano Lett 12(5):2509

    Article  CAS  Google Scholar 

  33. Jayaraman A, Schweizer KS (2008) Langmuir 24(19):11119

    Article  CAS  Google Scholar 

  34. Chremos A, Panagiotopoulos AZ, Yu HY, Koch DL (2011) J Chem Phys 135(11):114901

    Article  Google Scholar 

  35. Hong B, Chremos A, Panagiotopoulos AZ (2012) J Chem Phys 136(20):204904

    Article  Google Scholar 

  36. Lane JMD, Ismail AE, Chandross M, Lorenz CD, Grest GS (2009) Phys Rev E 79:050501

    Article  Google Scholar 

  37. Striolo A, McCabe C, Cummings PT (2006) J Chem Phys 125(10):104904

    Article  Google Scholar 

  38. Chan ER, Striolo A, McCabe C, Cummings PT, Glotzer SC (2007) J Chem Phys 127(11):114102

    Article  Google Scholar 

  39. Li HC, Lee CY, McCabe C, Striolo A, Neurock M (2007) J Phys Chem A 111(18):3577

    Article  CAS  Google Scholar 

  40. Peng Y, McCabe C (2007) Mol Phys 105(2–3):261

    Article  CAS  Google Scholar 

  41. Jankowski E, Glotzer SC (2009) J Chem Phys 131(10):104104

    Article  Google Scholar 

  42. Stucke DP, Crespi VH (2003) Nano Lett 3(9):1183

    Article  CAS  Google Scholar 

  43. Fornleitner J, Lo Verso F, Kahl G, Likos CN (2008) Soft Matter 4:480

    Article  CAS  Google Scholar 

  44. Keys AS, Iacovella CR, Glotzer SC (2011) Annu Rev Condens Matter Phys 2(1):263

    Article  CAS  Google Scholar 

  45. Ledeczi A, Balogh G, Molnar Z, Volgyesi P, Maroti M (2005) In: IEEE Aerospace (Big Sky, MT)

  46. Long E, Misra A, Sztipanovits J (1998) IEEE Comput 98(8):35

    Article  Google Scholar 

  47. Mathe J, Martin JB, Miller P, Ledeczi A, Weavind L, Nadas A, Miller A, Maron DJ, Sztipanovits J (2009) IEEE Softw Special Issue Domain Specif Lang Model 26(4):54

    Google Scholar 

  48. Mathe J, Werner J, Lee Y, Malin BA, Ledeczi A (2008) Methods Inf Med 47(5):10

    Google Scholar 

  49. Vajk T, Kereskenyi R, Levendovszky T, Ledeczi A (2009) In: Engineering of Computer Based Systems. San Francisco, USA

  50. Ledeczi A, Bakay A, Maroti M, Volgyesi P, Nordstrom G, Sprinkle J, Karsai G (2001) Computer 34(11):44

    Article  Google Scholar 

  51. Plimpton SJ (1995) J Comput Phys 117:1

    Article  CAS  Google Scholar 

  52. Anderson JA, Lorenz CD, Travesset A (2008) J Comput Phys 227(10):5342

    Article  Google Scholar 

  53. URL http://codeblue.umich.edu/hoomd-blue

  54. Martin MG, Siepmann JI (1998) J Phys Chem B B 102(14):2569

    Article  CAS  Google Scholar 

  55. Lee CK, Hua CC (2010) J Chem Phys 132(22):224904

    Article  Google Scholar 

  56. in’ t Veld PJ, Horsch MA, Lechman JB, Grest GS (2008) J Chem Phys 129(16):164504

    Article  Google Scholar 

  57. Paricaud P, Predota M, Chialvo AA, Cummings PT (2005) J Chem Phys 122(24):244511

    Article  Google Scholar 

Download references

Acknowledgments

Funding provided by the National Science Foundation grant NSF CBET-1028374, with computational time provided by the National Institute for Computational Sciences, Project ID UT-TNEDU014 and US Civilian Research and Development Foundation CREST II Junior Scientist Research Collaboration Program Grant, Award Number UKC1-9201-LV-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Iacovella.

Additional information

Published as part of the special collection of articles derived from the conference: Foundations of Molecular Modeling and Simulation 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacovella, C.R., Varga, G., Sallai, J. et al. A model-integrated computing approach to nanomaterials simulation. Theor Chem Acc 132, 1315 (2013). https://doi.org/10.1007/s00214-012-1315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1315-7

Keywords

Navigation