Skip to main content
Log in

Conduction modulation of π-stacked ethylbenzene wires on Si(100) with substituent groups

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

For the realization of molecular electronics, one essential goal is the ability to systematically fabricate molecular functional components in a well-controlled manner. Experimental techniques have been developed such that π-stacked ethylbenzene molecules can now be routinely induced to self-assemble on an H-terminated Si(100) surface at precise locations and along precise directions. Electron transport calculations predict that such molecular wires could indeed carry an electrical current, but the Si substrate may play a considerable role as a competing pathway for conducting electrons. In this work, we investigate the effect of placing substituent groups of varying electron donating or withdrawing strengths on the ethylbenzene molecules to determine how they would affect the transport properties of such molecular wires. The systems consist of a line of π-stacked ethylbenzene molecules covalently bonded to a Si substrate. The ethylbenzene line is bridging two Al electrodes to model current through the molecular stack. For our transport calculations, we employ a first-principles technique where density functional theory (DFT) is used within the non-equilibrium Green’s function formalism (NEGF). The calculated density of states suggest that substituent groups are an effective way to shift molecular states relative to the electronic states associated with the Si substrate. The electron transmission spectra obtained from the NEGF–DFT calculations reveal that the transport properties could also be extensively modulated by changing substituent groups. For certain molecules, it is possible to have a transmission peak at the Fermi level of the electrodes, corresponding to high conduction through the molecular wire with essentially no leakage into the Si substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The van der Waals radius cutoff was set to 15.0 Å, so that the terms corresponding to interactions over distances greater than this value are assumed to be zero.

  2. http://www.nanoacademic.ca.

  3. The reason these levels have finite broadening is because of the π-stacking interaction with molecules in neighboring images of the periodic system.

  4. Note that the effect of including the Si substrate is to shift the positions of the transmission peaks by ca. 0.5 eV and they become split due to hybridization with the Si states.

  5. Comparing the transmission peak positions in Fig. 5b to the PDOS positions in Fig. 4e, we see that they differ. This is because in position of the DOS peaks are relative to the Si substrate, while in the transmission spectrum they are relative to the E F of the Al electrodes. In other words, the peaks in the transmission spectra are shifted (by ca. −1.5 eV) relative to the PDOS plots.

References

  1. Lopinski GP, Wayner DDM, Wolkow RA (2000) Nature 406(6791):48

    Article  CAS  Google Scholar 

  2. Piva PG, DiLabio GA, Pitters JL, Zikovsky J, Rezeq M, Dogel S, Hofer WA, Wolkow RA (2005) Nature 435(7042):658

    Article  CAS  Google Scholar 

  3. Basu R, Guisinger NP, Greene ME, Hersam MC (2004) Appl Phys Lett 85(13):2619

    Article  CAS  Google Scholar 

  4. Hossain MZ, Kato HS, Kawai M (2005) J Am Chem Soc 127(43):15030

    Article  CAS  Google Scholar 

  5. Hossain MZ, Kato HS, Kawai M (2005) J Phys Chem B 109(49):23129

    Article  CAS  Google Scholar 

  6. Zikovsky J, Dogel SA, Haider MB, DiLabio GA, Wolkow RA (2007) J Phys Chem A 111(49):12257

    Article  CAS  Google Scholar 

  7. Kirczenow G, Piva PG, Wolkow RA (2005) Phys Rev B 72(24):245306

    Article  Google Scholar 

  8. Liu XY, Raynolds JE, Wells C, Welch J, Cale TS (2005) J Appl Phys 98(3):033712

    Article  Google Scholar 

  9. Rochefort A, Boyer P, Nacer B (2007) Org Elect 8(1):1

    Article  CAS  Google Scholar 

  10. Geng WT, Oda M, Nara J, Kondo H, Ohno T (2008) J Phys Chem B 112(10):2795

    Article  CAS  Google Scholar 

  11. Smeu M, Wolkow RA, Guo H (2009) J Am Chem Soc 131(31):11019

    Article  CAS  Google Scholar 

  12. Kirczenow G, Piva PG, Wolkow RA (2009) Phys Rev B 80(3):035309

    Article  Google Scholar 

  13. Venkataraman L, Park YS, Whalley AC, Nuckolls C, Hybertsen MS, Steigerwald ML (2007) Nano Lett 7(2):502

    Article  CAS  Google Scholar 

  14. Smeu M, Wolkow RA, DiLabio GA (2008) J Chem Phys 129(3):034707

    Article  Google Scholar 

  15. Jalili S, Ashrafi R (2011) Physica E 43(4):960

    Article  CAS  Google Scholar 

  16. Anagaw AY, Wolkow RA, DiLabio GA (2008) J Phys Chem C 112(10):3780

    Article  CAS  Google Scholar 

  17. Kresse G, Hafner J (1993) Phys Rev B 47(1):558

    Article  CAS  Google Scholar 

  18. Kresse G, Furthmüller J (1996) Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  19. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  20. Grimme S (2006) J Comput Chem 27(15):1787

    Article  CAS  Google Scholar 

  21. Blöchl PE (1994) Phys Rev B 50(24):17953

    Article  Google Scholar 

  22. Kresse G, Joubert D (1999) Phys Rev B 59(3):1758

    Article  CAS  Google Scholar 

  23. Taylor J, Guo H, J. Wang (2001) Phys Rev B 63(24):245407

    Article  Google Scholar 

  24. Waldron D, Haney P, Larade B, MacDonald A, Guo H (2006) Phys Rev Lett 96(16):166804

    Article  Google Scholar 

  25. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  26. Sancho MPL, Sancho JML, Rubio J (1984) J Phys F: Met Phys 14(5):1205

    Article  Google Scholar 

  27. Troullier N, Martins JL (1991) Phys Rev B 43(3):1993

    Article  CAS  Google Scholar 

  28. Smeu M, DiLabio GA (2010) J Phys Chem C 114(41):17874

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gino A. DiLabio for numerous helpful discussions. We are grateful to Sharcnet for access to computational resources and NSERC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Smeu.

Additional information

Published as part of the special collection of articles celebrating the 50th anniversary of Theoretical Chemistry Accounts/Theoretica Chimica Acta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smeu, M., Wolkow, R.A. & Guo, H. Conduction modulation of π-stacked ethylbenzene wires on Si(100) with substituent groups. Theor Chem Acc 131, 1085 (2012). https://doi.org/10.1007/s00214-011-1085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-011-1085-7

Keywords

Navigation