Skip to main content
Log in

Inverted-sandwich-type and open-lantern-type dinuclear transition metal complexes: theoretical study of chemical bonds by electronic stress tensor

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We study the electronic structure of two types of transition metal complexes, the inverted-sandwich-type and open-lantern-type, by the electronic stress tensor. In particular, the bond order \(b_\varepsilon\) measured by the energy density which is defined from the electronic stress tensor is studied and compared with the conventional MO-based bond order. We also examine the patterns found in the largest eigenvalue of the stress tensor and corresponding eigenvector field, the “spindle structure” and “pseudo-spindle structure”. As for the inverted-sandwich-type complex, our bond order \(b_\varepsilon\) calculation shows that relative strength of the metal-benzene bond among V, Cr, and Mn complexes is V > Cr > Mn, which is consistent with the MO-based bond order. As for the open-lantern-type complex, we find that our energy density-based bond order can properly describe the relative strength of Cr–Cr and Mo–Mo bonds by the surface integration of the energy density over the “Lagrange surface” which can take into account the spatial extent of the orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. They are called M1 and Mo1 in Ref. [29].

  2. If calculated at the cc-pVDZ level, we see small regions with positive eigenvalue just like those of the Mo–Mo bond in Fig. 14. Since such regions do not appear at 6-31G(d,p), cc-pVTZ and cc-pVQZ levels, we believe they are numerical artifacts in the case of C2H2.

References

  1. Schrödinger E (1927) Ann Phys (Leipzig) 82:265

    Google Scholar 

  2. Pauli W, der Physik Handbuch (1933) Band XXIV, Teil 1, Springer, Berlin, pp 83–272; reprinted in Handbuch der Physik, vol 5, Springer, Berlin, 1958 (Part 1); translated into English in General Principles of Quantum Mechanics, Berlin, Springer, 1980

  3. Epstein ST (1975) J Chem Phys 63:3573

    Article  CAS  Google Scholar 

  4. Bader RFW (1980) J Chem Phys 73:2871

    Article  CAS  Google Scholar 

  5. Bamzai AS, Deb BM (1981) Rev Mod Phys 53:95

    Article  CAS  Google Scholar 

  6. Nielsen OH, Martin RM (1983) Phys Rev Lett 50:697

    Article  CAS  Google Scholar 

  7. Nielsen OH, Martin RM (1985) Phys Rev B 32:3780

    Article  CAS  Google Scholar 

  8. Folland NO (1986) Phys Rev B 34:8296

    Article  CAS  Google Scholar 

  9. Folland NO (1986) Phys Rev B 34:8305

    Article  CAS  Google Scholar 

  10. Godfrey MJ (1988) Phys Rev B 37:10176

    Article  Google Scholar 

  11. Filippetti A, Fiorentini V (2000) Phys Rev B 61:8433

    Article  CAS  Google Scholar 

  12. Tachibana A (2001) J Chem Phys 115:3497

    Article  CAS  Google Scholar 

  13. Pendás AM (2002) J Chem Phys 117:965

    Article  Google Scholar 

  14. Rogers CL, Rappe AM (2002) Phys Rev B 65:224117

    Article  Google Scholar 

  15. Tachibana A (2004) Int J Quantum Chem 100:981

    Article  CAS  Google Scholar 

  16. Tachibana A (2005) J Mol Model 11:301

    Article  CAS  Google Scholar 

  17. Morante S, Rossi GC, Testa M (2006) J Chem Phys 125:034101

    Article  CAS  Google Scholar 

  18. Tao J, Vignale G, Tokatly IV (2008) Phys Rev Lett 100:206405

    Article  Google Scholar 

  19. Ayers PW, Jenkins S (2009) J Chem Phys 130:154104

    Article  Google Scholar 

  20. Tachibana A (2010) J Mol Struct (THEOCHEM) 943:138

    Article  CAS  Google Scholar 

  21. Szarek P, Tachibana A (2007) J Mol Model 13:651

    Article  CAS  Google Scholar 

  22. Szarek P, Sueda Y, Tachibana A (2008) J Chem Phys 129:094102

    Article  Google Scholar 

  23. Szarek P, Urakami K, Zhou C, Cheng H, Tachibana A (2009) J Chem Phys 130:084111

    Article  Google Scholar 

  24. Ichikawa K, Myoraku T, Fukushima A, Ishihara Y, Isaki R, Takeguchi T, Tachibana A (2009) J Mol Struct (THEOCHEM) 915:1

    Article  CAS  Google Scholar 

  25. Ichikawa K, Tachibana A (2009) Phys Rev A 80:062507

    Article  Google Scholar 

  26. Ichikawa K, Wagatsuma A, Kusumoto M, Tachibana A (2010) J Mol Struct (THEOCHEM) 951:49

    Article  CAS  Google Scholar 

  27. Ichikawa K, Ikeda Y, Wagatsuma A, Watanabe K, Szarek P, Tachibana A (2011) Int J Quant Chem (in press)

  28. Kurokawa YI, Nakao Y, Sakaki S (2010) J Phys Chem A 114:1191

    Article  CAS  Google Scholar 

  29. Kurokawa YI, Nakao Y, Sakaki S (2009) J Phys Chem A 113:3202

    Article  CAS  Google Scholar 

  30. Ayers PW, Parr RG, Nagy A (2002) Int J Quant Chem 90:309

    Article  CAS  Google Scholar 

  31. Anderson JSM, Ayers PW, Hernandez JIR (2010) J Phys Chem A 114:8884

    Article  CAS  Google Scholar 

  32. Senami M, Ichikawa K, Doi K, Szarek P, Nakamura K, Tachibana A (2008) Molecular regional DFT program package, ver. 3. Tachibana Lab, Kyoto University, Kyoto

    Google Scholar 

  33. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  34. Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Mol Phys 80:1431

    Article  CAS  Google Scholar 

  35. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Phys Chem 86:866

    Article  CAS  Google Scholar 

  36. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  37. DeLano WL (2008) The PyMOL molecular graphics system. DeLano Scientific LLC, Palo Alto. http://www.pymol.org

  38. Varetto U (2009) MOLEKEL Version 5.4; Swiss National Supercomputing Centre: Manno (Switzerland)

  39. Tsai YC, Wang PY, Chen SA, Chen JM (2007) J Am Chem Soc 129:8066

    Article  CAS  Google Scholar 

  40. Tsai YC, Wang PY, Lin KM, Chen SA, Chen JM (2008) Chem Commun 205

  41. Monillas WH, Yap GPA, Theopold KH (2007) Angew Chem Int Ed 46:6692

    Article  CAS  Google Scholar 

  42. Frenking G, Fröhlich N (2000) Chem Rev 100:717

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Theoretical calculations were partly carried out using Research Center for Computational Science, Okazaki, Japan. This research work is supported partly by Collaborative Research Program for Young Scientists of ACCMS and IIMC from Kyoto University. This work is supported partly by Grant-in-Aid for Scientific research (No. 22550011), Grant-in-Aid for Specially Promoted Research (No. 22000009), and Grand Challenge Project (IMS, Okazaki, Japan) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitomo Tachibana.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichikawa, K., Wagatsuma, A., Kurokawa, Y.I. et al. Inverted-sandwich-type and open-lantern-type dinuclear transition metal complexes: theoretical study of chemical bonds by electronic stress tensor. Theor Chem Acc 130, 237–250 (2011). https://doi.org/10.1007/s00214-011-0966-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0966-0

Keywords

Navigation