Skip to main content
Log in

A density functional theory study of the manganese-phthalocyanine

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a systematic density functional theory (DFT) study of the isolated manganese-phthalocyanine, MnPc, by using both localized gaussian-type orbital (GTO) and plane-wave (PW) basis sets and the following exchange-correlation functionals: B3LYP, PBE, PBE0, HSE, and HSE06. We find a very good agreement between GTO and PW results, which is a necessary condition in order to extend the present methodology to MnPc molecules deposited on metal surfaces. We conclude that the HSE06 functional is the most suitable one for the study of MnPc/inorganic interfaces with a basis of plane waves. We compare our calculated electron energy spectra with two available experiments [Kraus et al. in Chem Phys Lett 469:121, 2009; Grobosch et al. in Organics Electron 11:1483, 2010; Papageorgiou et al. in Prog Surf Sci 77:139, 2004] in which the ultraviolet photoemission spectra (UPS) have been measured. Our results suggest that spectra obtained from MnPc molecules in the gas phase are closer to those obtained from thin films of MnPc deposited on inert surfaces than to those obtained from thick films. Finally, we report optical absorption spectra by using a time-dependent DFT approach. Our results are again compatible with measurements performed on thin MnPc films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kraus R, Grobosch M, Knupfer M (2009) Chem Phys Lett 469:121

    Article  CAS  Google Scholar 

  2. Grobosch M, Schmidt C, Kraus R, Knupfer M (2010) Organics Electron 11:1483

    Article  CAS  Google Scholar 

  3. Papageorgiou N, Salomon E, Angot T, Layet J, Giovanelli L, Lay GL (2004) Prog Surf Sci 77:139

    Article  CAS  Google Scholar 

  4. Orti E, Bredas JL (1992) J Am Chem Soc 114:8669

    Article  CAS  Google Scholar 

  5. Yamashita A, Hayashi T (1996) Adv Mater 8:791

    Article  CAS  Google Scholar 

  6. Hudson A, Whitfield HJ (1967) Inorg Chem 6:1120

    Article  CAS  Google Scholar 

  7. Moss TH, Robinson AB (1968) Inorg Chem 7:1692

    Article  CAS  Google Scholar 

  8. Dale BW, Williams RJP, Edwards PR, Johnson CE (1968) J Chem Phys 49:3445

    Article  CAS  Google Scholar 

  9. Barraclough CG, Martin RL, Mitra S, Sherwood RC (1970) J Chem Phys 53:1643

    Article  CAS  Google Scholar 

  10. Kirner JF, Dong W, Scheidt WR (1976) Inorg Chem 15:1685

    Article  CAS  Google Scholar 

  11. Kadish KM, Smith KM, Guilard R (2003) Applications of Phthalocyanines. The prophyrin handbook, vol 19. Academic Press, San Diego

    Google Scholar 

  12. Crone B, Dodabalapur A, Lin YY, Filas RW, Bao Z, LaDuca A, Sarperhkar R, Katz HE, Li W (2000) Nature 403:521

    Article  CAS  Google Scholar 

  13. Nazin GV, Qui XH, Ho W (2003) Science 307:77

    Article  Google Scholar 

  14. Witte G, Wöll C (2004) J Mater Res 19:1889

    Article  CAS  Google Scholar 

  15. Wende H, Bernien M, Luo J, Sorg C, Ponpandiard N, Kurde J, Miguel J, Piantek M, Xu X, Eckhold P, Kuch W, Baberschke K, Panchmatia PM, Sanyal B, Oppeneer PM, Eriksson O (2007) Nat Mater 6:516

    Article  CAS  Google Scholar 

  16. Bogani L, Wernsdorfer W (2008) Nat Mater 7:179

    Article  CAS  Google Scholar 

  17. Shen X, Sun L, Benassi E, Shen Z, Zhao X, Sanvito S, Hou S (2010) J Chem Phys 132:054703

    Article  Google Scholar 

  18. Lippel PH, Wilson RJ, Miller MD, Wöll C, Chiang S (1989) Phys Rev Lett 62:171

    Article  CAS  Google Scholar 

  19. Tu XW, Mikaekian GR, Ho W (2008) Phys Rev Lett 100:126807

    Article  CAS  Google Scholar 

  20. Nazin GV, Wu SW, Ho W (2005) Proc Natl Acad Sci 102:8832

    Article  CAS  Google Scholar 

  21. Jiang P, Ma X, Ning Y, Song C, Chen X, Jia JF, Xue QK (2008) J Am Chem Soc 130:7790

    Article  CAS  Google Scholar 

  22. Zhao A, Li Q, Chen L, Xiang H, Pan S, Wang B, Xiao X, Yang J, Hou JG, Zhu Q (2005) Science 309:1542

    Article  CAS  Google Scholar 

  23. Iacovita C, Rastei MV, Heinrich BW, Brummen T, Kortus J, Limot L, Bucher JP (2008) Phys Rev Lett 101:116602

    Article  CAS  Google Scholar 

  24. Gao L, Ji W, Hu YB, Cheng ZH, Deng ZT, Liu Q, Jiang N, Lin X, Guo W, Du SX, Ans WAH, Xie XC, Gao HJ (2007) Phys Rev Lett 99:106402

    Article  CAS  Google Scholar 

  25. Cheng ZH, Gao L, Deng ZT, Jiang N, Lin X, He XB, Du SX, Gao HJ (2007) J Phys Chem C 111:9240

    Article  CAS  Google Scholar 

  26. Copakumar TG, Lackinger M, Hackert M, Müller F, Hietschold M (2004) J Phys Chem B 108:7839

    Article  Google Scholar 

  27. Koudia M, Abel M, Maurel C, Bliek A, Catalin C, Mossoyan M, Mossoyan JC, Porte L (2006) J Phys Chem B 110:10058

    Article  CAS  Google Scholar 

  28. Fu YS, Ji SH, Chem C, Ma XC, Wu R, Wang CC, Duan WH, Qiu XH, Sun B, Zhang P, Jia JF, Xue QK (2007) Phys Rev Lett 99:2566601

    Google Scholar 

  29. Wu SW, Nazin GV, Chem X, Qui XH, Ho W (2004) Phys Rev Lett 93:236802

    Article  CAS  Google Scholar 

  30. Vitali L, Fabris S, Conte AM, Brink S, Ruben M, Baroni S, Kern K (2008) Nano Lett 8:3364

    Article  CAS  Google Scholar 

  31. Chang S, Kuck S, Brede J, Lichtenstein L, Hoffmann G, Wiesendanger R (2008) Phys Rev B 78:233409

    Article  Google Scholar 

  32. Tsukahara N, Noto KI, Ohara M, Shiroki S, Takagi N (2009) Phys Rev Lett 102:167203

    Article  Google Scholar 

  33. Mitra S, Gregson A, Hatfield W, Weller R (1983) Inorg Chem 22:1729

    Article  CAS  Google Scholar 

  34. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  35. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  36. Stephens PJ, Devlin FJ, Chabalowski CP, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  37. Paier J, Marsman M, Kresse G (2007) J Chem Phys 127:024103

    Article  Google Scholar 

  38. Marom N, Hod O, Scuseria GE, Kronik L (2008) J Chem Phys 128:164107

    Article  Google Scholar 

  39. Marom N, Kronik L (2009) Appl Phys A 95:159

    Article  CAS  Google Scholar 

  40. Marom N, Kronik L (2009) Appl Phys A 95:165

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  42. Calzolari A, Ferretti A, Nardelli MB (2007) Nanotechnologies 18:424013

    Article  Google Scholar 

  43. Calzolari A, Jim W, Reutt-Robey JE, Nardelli MB (2007) Nanotechnologies 18:424013

    Article  Google Scholar 

  44. Wang J, Shi Y, Cao J, Wu R (2009) Appl Phys Lett 94:122502

    Article  Google Scholar 

  45. Dori N, Menon M et al (2006) Phys Rev B 73:195208

    Article  Google Scholar 

  46. Adamo C, Barone V (1999) Chem Phys Lett 314:1999

    Article  Google Scholar 

  47. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  48. Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982

    Article  CAS  Google Scholar 

  49. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  CAS  Google Scholar 

  50. Vázquez H, Jelinek P, Brandbyge M, Jauho A, Flores F (2009) Appl Phys A 95:257

    Article  Google Scholar 

  51. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  52. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) J Chem Phys 125:224106

    Article  Google Scholar 

  53. Frisch MJ, Trucks GW et al (2009) Gaussian 09 Revision a.1. Gaussian Inc, Wallingford

    Google Scholar 

  54. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  55. Blochl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  56. Marom N, Tkatchenko A, Scheffler M, Kronik L (2010) J Chem Theory Comput 6:81

    Article  CAS  Google Scholar 

  57. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439

    Article  CAS  Google Scholar 

  58. Onida G, Reining L, Rubio A (2002) Rev Mod Phys 74:601

    Article  CAS  Google Scholar 

  59. Palummo M, Hogan C, Sottile F, Bagalá P, Rubio A (2009) J Chem Phys 131:084102

    Article  Google Scholar 

  60. Paier J, Hirschl R, Marsman M, Kresse G (2005) J Chem Phys 122:234102

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mare Nostrum BSC and CCC-UAM for allocation of computer time. Work partially supported by the European COST Action CM0702, the Ministerio de Ciencia e Innovación through the DGI projects Nos. FIS2007-60064 and CSD 2007-00010 and the DGCI project No. ACI2008-0777, and the Comunidad Autónoma de Madrid through the DGI project S2009/MAT1726.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Stradi.

Additional information

Published as part of the special issue celebrating theoretical and computational chemistry in Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stradi, D., Díaz, C., Martín, F. et al. A density functional theory study of the manganese-phthalocyanine. Theor Chem Acc 128, 497–503 (2011). https://doi.org/10.1007/s00214-010-0852-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0852-1

Keywords

Navigation