Skip to main content
Log in

Three-propeller-blade-shaped electride: remarkable alkali-metal-doped effect on the first hyperpolarizability

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Significant alkali-metal-doped effects on the structure and the first hyperpolarizability (β 0) of effective multi-nitrogen complexant tris[(2-imidazolyl)methyl]amine (TIMA) are investigated. Three imidazoles of TIMA like three blades of propeller connect with methyls by the C–C single bonds. Because of the three C–C single-bond cooperative rotations, the TIMA behaves with great flexibility, and it is a high-performance multi-nitrogen complexant for the alkali metal doping. Thus, the new complexes Am-TIMA (Am = Li, Na, and K) with electride characteristic have diffuse excess electron than the reported electride-type system due to the strong interaction between the complexant TIMA and alkali metal. For the first hyperpolarizability, three engaging electrides Am-TIMA with the diffuse excess electrons exhibit considerably large β 0 values using the MP2 (full) method and the β 0 values of new electrides are greatly larger (3,464–29,705 times) than that (338 au) of TIMA. Surprisingly, the K-TIMA sets a new record β 0 value to be 1.00 × 107 au which far exceeds than that (3,694–76,978 au) of the reported electride-type system Li@calix[4]pyrrole (J Am Chem Soc 127:10977–10981, 2005) and Lin−H−(CF2−CH2)3−H (n = 1, 2) (J Am Chem Soc 129:2967–2970, 2007) and 31,123 au of the organometallic system (J Am Chem Soc 121:4047–4053, 1999) Ru(trans-4,4′-diethylaminostyryl-2,2′-bipyridine) 2+3 , as well as 1.23 × 106 au of the large donor-CNT systems (Nano Lett 8:2814–2818, 2008). Clearly, the alkali-metal-doped effect on the first hyperpolarizability is very dramatic for the high-performance multi-nitrogen complexant TIMA. Considering simple possibility from molecule to material, the β 0 values of optimized Li-TIMA-dimer and Li-TIMA-tetramer are investigated by BHandHLYP method. Interestingly, results show that the order of β 0 value is Li-TIMA-monomer < Li-TIMA-dimer < Li-TIMA-tetramer. So the new three-propeller-blade-shaped electrides can be considered as candidates for high-performance nonlinear optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nalwa HS (ed) (2001) Handbook of advanced electronic and photonic materials and devices, 9th edn. Academic, New York

    Google Scholar 

  2. Papadopoulos MG, Sadlej AJ, Leszczynski J (eds) (2006) Non-linear optical properties of matter: from molecules to condensed phases. Springer, New York

    Google Scholar 

  3. Eaton DF (1991) Science 253:281

    Article  CAS  Google Scholar 

  4. Long NJ, Williams CK (2003) Angew Chem Int Ed 42:2586

    Article  CAS  Google Scholar 

  5. Marder SR, Torruellas WE, Blanchard-Desce M, Ricci V, Stegeman GI, Gilmour S, Brédas J-L, Li J, Bublitz GU, Boxer SG (1997) Science 276:1233

    Article  CAS  Google Scholar 

  6. Avramopoulos A, Reis H, Li J, Papadopoulos MG (2004) J Am Chem Soc 126:6179

    Article  CAS  Google Scholar 

  7. Le Bouder T, Maury O, Bondon A, Costuas K, Amouyal E, Ledoux I, Zyss J, Le Bozec H (2003) J Am Chem Soc 125:12284

    Article  CAS  Google Scholar 

  8. Champagne B, Spassova M, Jadin J-B, Kirtman B (2002) J Chem Phys 116:3935

    Article  CAS  Google Scholar 

  9. Plaquet A, Guillaume M, Champagne B, Rougier L, Mancois F, Rodriguez V, Pozzo JL, Ducasse L, Castet F (2008) J Phys Chem C 112:5638–5645

    Article  CAS  Google Scholar 

  10. Coe BJ (2006) Acc Chem Res 39:383–393

    Article  CAS  Google Scholar 

  11. Chen D, Fetterman HR, Wang W (1997) Appl Phys Lett 70:3335

    Article  CAS  Google Scholar 

  12. Cheng TR, Huang CH, Gan LB (1998) J Mater Chem 8:931

    Article  CAS  Google Scholar 

  13. Kenney JT, Lam JC (1998) Polym Prepr 73:1012

    Google Scholar 

  14. Nakano M, Fujita H, Takahata M, Yamaguchi K (2002) J Am Chem Soc 124:9648–9655

    Article  CAS  Google Scholar 

  15. Ayan D, Swapan KP (2004) J Phys Chem A 108:9527–9530

    Article  CAS  Google Scholar 

  16. Xiao DQ, Bulat FA, Yang WT, Beratan DN (2008) Nano Lett 8:2814–2818

    Article  CAS  Google Scholar 

  17. Maroulis G (2008) J Chem Phys 129:044314

    Article  CAS  Google Scholar 

  18. Kirtman B, Bonness S, Ramirez-Solis A, Champagne B, Matsumoto H, Sekino H (2008) J Chem Phys 128:114108

    Article  CAS  Google Scholar 

  19. Nakano M, Kishi R, Nitta T, Kubo T, Nakasuji K, Kamada K, Ohta K, Champagne B, Botek E, Yamaguchi K (2005) J Phys Chem A 109:885–891

    Article  CAS  Google Scholar 

  20. Maroulis G, Pouchan C (2003) Phys Chem Chem Phys 5:1992–1995

    Article  CAS  Google Scholar 

  21. Karamanis P, Pouchan C, Maroulis G (2008) Phys Rev A 77:013201

    Article  CAS  Google Scholar 

  22. Maroulis G, Karamanis P, Pouchan C (2007) J Chem Phys 126:154316

    Article  CAS  Google Scholar 

  23. Maroulis G, Bégué D, Pouchan C (2003) J Chem Phys 119:794

    Article  CAS  Google Scholar 

  24. Li Y, Li ZR, Wu D, Li RY, Hao XY, Sun CC (2004) J Phys Chem B 108:3145–3148

    Article  CAS  Google Scholar 

  25. Chen W, Li ZR, Wu D, Gu FL, Hao XY, Wang BQ, Li RJ, Sun CC (2004) J Chem Phys 121:10489–10494

    Article  CAS  Google Scholar 

  26. Chen W, Li ZR, Wu D, Li RY, Sun CC (2005) J Phys Chem B 109:601–608

    Article  CAS  Google Scholar 

  27. Chen W, Li ZR, Wu D, Li Y, Sun CC (2005) J Phys Chem A 109:2920–2924

    Article  CAS  Google Scholar 

  28. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) J Am Chem Soc 127:10977–10981

    Article  CAS  Google Scholar 

  29. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL, Yuriko A (2006) J Am Chem Soc 128:1072–1073

    Article  CAS  Google Scholar 

  30. Jing YQ, Li ZR, Wu D, Li Y, Wang BQ, Gu FL, Aoki Y (2006) Chem Phys Chem 7:1759–1763

    CAS  Google Scholar 

  31. Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) J Am Chem Soc 129:2967–2970

    Article  CAS  Google Scholar 

  32. Xu HL, Li ZR, Wu D, Ma F, Li Y, Li ZJ, Gu FL (2009) J Phys Chem C 113:4984–4986

    Article  CAS  Google Scholar 

  33. Muhammad S, Xu HL, Liao Y, Kan YH, Su ZM (2009) J Am Chem Soc 131:11833–11840

    Article  CAS  Google Scholar 

  34. Dye JL (1997) Inorg Chem 36:3816–3826

    Article  CAS  Google Scholar 

  35. Ichimura AS, Dye JL (2002) J Am Chem Soc 124:1170–1171

    Article  CAS  Google Scholar 

  36. Dye JL (2003) Science 301:607–608

    Article  CAS  Google Scholar 

  37. Wagner MJ, Dye JL (1996) In: Gokel GW (ed) Molecular recognition: receptors for cationic guests, vol. 1. Pergamon, Oxford, UK, pp 477–510

  38. Iwata S, Tsurusawa T (2001) In: Advances in metal and semiconductor clusters, vol 5. JAI Press, Greenwich, CN, pp 39–75

  39. Glendening ED, Reed AE, Carpenter JE, Weinhold F. NBO version 3.1

  40. Frisch MJ et al (2009) Gaussian 09, reVision A.02. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  41. Frisch MJ et al (2004) Gaussian 03, reVision E.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  42. Dennington R II, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) GaussView, version 3.09. Semichem, Inc., Shawnee Mission, KS

  43. Karplus M, Porter RN (1970) Atoms and molecules: an introduction for students of physical chemistry. The Benjamin/Cummings Publishing Company, Menlo Park, California, Reading, Massachusetts, London, Amsterdam, Don Mills, Ontario, Sydney

  44. Vance FW, Hupp JT (1999) J Am Chem Soc 121:4047–4053

    Article  CAS  Google Scholar 

  45. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664

    Article  CAS  Google Scholar 

  46. Oudar JL (1977) J Chem Phys 67:446

    Article  CAS  Google Scholar 

  47. Kanls DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195

    Article  Google Scholar 

  48. Mark GK (2005) Phys Rev A 72:053819

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20773046, 20703008, and 21003019), and Chang Jiang Scholars Program (2006), Program for Changjiang Scholars and Innovative Research Team in University (IRT0714), Science Foundation of Young Teachers of Northeast Normal University (20090402 and 09QNJJ008) and project supported by the Foundation for Young Scholars of Jilin Province, China (Grant No. 20100178 and 20100114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Min Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, HL., Sun, SL., Muhammad, S. et al. Three-propeller-blade-shaped electride: remarkable alkali-metal-doped effect on the first hyperpolarizability. Theor Chem Acc 128, 241–248 (2011). https://doi.org/10.1007/s00214-010-0837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0837-0

Keywords

Navigation