Skip to main content
Log in

Brief review related to the foundations of time-dependent density functional theory

  • Overview
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electron density n(r,t), which is the central tool of time-dependent density functional theory, is presently considered to be derivable from a one-body time-dependent potential V(r,t), via one-electron wave functions satisfying a time-dependent Schrödinger equation. This is here related via a generalized equation of motion to a Dirac density matrix now involving t. Linear response theory is then surveyed, with a special emphasis on the question of causality with respect to the density dependence of the potential. Extraction of V(r,t) for solvable models is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. March NH, Tosi MP (1972) Plasmons propagating in periodic lattices and their dispersion. Proc R Soc A Lond A330:373

    Article  Google Scholar 

  2. March NH, Tosi MP (1973) Lattice effects in fast electron-energy losses by plasmon excitation in metals. Philos Mag 28:91

    Article  Google Scholar 

  3. Gross EKU, Kohn W (1990) Adv Quantum Chem 21:255

  4. Ando T (1977) Inter-subband optical-absorption in space-charge layers on semiconductor surfaces. Zf Phys B 26:263

    Article  CAS  Google Scholar 

  5. Ando T (1977) Inter-subband optical-transitions in a surface space-charge layer. Solid State Commun 21:133

    Article  CAS  Google Scholar 

  6. Zangwill A, Soven P (1980) Density-functional approach to local-field effects in finite systems—photoabsorption in the rare-gases. Phys Rev A 21:1561

    Article  CAS  Google Scholar 

  7. Zangwill A, Soven P (1981) Resonant 2-electron excitation in copper. Phys Rev B 24:4121

    Article  CAS  Google Scholar 

  8. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  9. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev Lett 136:B864

    Google Scholar 

  10. Schirmer J, Dreuw A (2007) Critique of the foundations of time-dependent density-functional theory. Phys Rev A 75:022513

    Article  Google Scholar 

  11. Slater JC (1951) A simplification of the Hartree–Fock Method. Phys Rev 81:385

    Article  CAS  Google Scholar 

  12. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  13. Qian Z, Sahni V (1998) Quantum-mechanical interpretation of time-dependent density-functional theory. Phys Lett A 247:303

    Article  CAS  Google Scholar 

  14. Qian Z, Sahni V (2000) Time-dependent differential virial theorems. Int J Quant Chem 78:341

    Article  CAS  Google Scholar 

  15. Qian Z, Sahni V (2001) Sum rules and properties in time-dependent density-functional theory. Phys Rev A 63:042508

    Article  Google Scholar 

  16. Sham LJ, Schlüter M (1983) Density-functional theory of the energy gap. Phys Rev Lett 51:1888

    Article  Google Scholar 

  17. van Leeuwen R (1996) The Sham-Schlüter equation in time-dependent density-functional theory. Phys Rev Lett 76:3610

    Article  Google Scholar 

  18. Görling, A, Levy M (1994) Exact Kohn–Sham scheme based on perturbation theory. Phys Rev A 50:196

    Article  Google Scholar 

  19. Xu BX, Rajagopal AK (1985) Current-density-functional theory for time-dependent systems. Phys Rev A 31:2682

    Article  Google Scholar 

  20. Dhara AK, Ghosh SK (1987) Density-functional theory for time-dependent systems. Phys Rev A 35:442

    Article  CAS  Google Scholar 

  21. Pan XY, Sahni V (2003) Corollary to the Hohenberg–Kohn theorem. Int J Quant Chem 95:381

    Article  Google Scholar 

  22. Pan XY, Sahni V (2008) New perspectives on the fundamental theorem of density functional theory. Int J Quantum Chem 108:2756

    Article  CAS  Google Scholar 

  23. Niehaus TA, Suhai S, March NH, (2008) Dynamical generalization of a solvable family of two-electron model atoms with general interparticle repulsion. J Phys A Math Theor 41:085304

    Article  Google Scholar 

  24. Holas A, Cinal M, March NH (2008) Comment on “Critique of the foundations of time-dependent density-functional theory”. Phys Rev A 78:016501

    Article  Google Scholar 

  25. Holas A, Howard IA, March NH (2003) Wave functions and low-order density matrices for a class of two-electron artificial atoms embracing Hookean and Moshinsky models. Phys Lett A 310:451

    Article  CAS  Google Scholar 

  26. Samanta A, Ghosh SK (1990) Correlation in an exactly solvable two-particle quantum system. Phys Rev A 42:1178

    Article  Google Scholar 

  27. Ghosh SK, Samanta A (1991) Study of correlation effects in an exactly solvable model two-electron system. J Chem Phys 94:517

    Article  CAS  Google Scholar 

  28. Dobson JF (1994) Harmonic-potential theorem: implications for approximate many-body theories. Phys Rev Lett 73:2244

    Article  CAS  Google Scholar 

  29. Sahni V (2004) Quantal density functional theory. Springer, Berlin

    Google Scholar 

  30. Moshinsky M (1968) How good is Hartree–Fock approximation. Am J Phys 36:52

    Article  Google Scholar 

  31. van Leeuwen R (1999) Mapping from densities to potentials in time-dependent density-functional theory. Phys Rev Lett 82:3863

    Article  Google Scholar 

  32. Lein M, Kümmel S (2005) Exact time-dependent exchange-correlation potentials for strong-field electron dynamics. Phys Rev Lett 94:143003

    Article  Google Scholar 

  33. D’Amico I, Vignale G (1999) Exact exchange-correlation potential for a time-dependent two-electron system. Phys Rev B 59:7876

    Article  Google Scholar 

  34. Gross EKU, Ulrich CA, Gossmann UJ (1995) In: Gross EKU, Dreizler RM (eds) Density functional theory, NATO Advanced Studies Institute, Ser. B, vol 337, Plenum Press, New York

  35. Gross EKU, Dobson JF, Petersilka M (1996) In: Nalewajski RF (ed) Density functional theory, Springer, New York

  36. Amusia MY, Shaginyan VR (1998) Relations between action integral, response functions, and causality in density functional theory. Phys Lett A 250:157

    Article  CAS  Google Scholar 

  37. Amusia MY, Shaginyan VR (2001) Comment on ‘Analysis of causality in time-dependent density-functional theory’. Phys Rev A 60:056501

    Article  Google Scholar 

  38. Harbola MK, Banerjee A (1999) Analysis of causality in time-dependent density-functional theory. Phys Rev A 60:5101

    Article  CAS  Google Scholar 

  39. Harbola MK (2001) Reply to comment on ‘Analysis of causality in time-dependent density-functional theory’. Phys Rev A 63:056502

    Article  Google Scholar 

  40. Harbola MK (2002) Reviews of modern quantum chemistry, vol II, 1226, World Scientific, Singapore

  41. Cohen MH, Wasserman A (2005) N-representability and stationarity in time-dependent density-functional theory. Phys Rev A 71:032515

    Article  Google Scholar 

  42. Rajagopal AK (1996) Time-dependent variational principle and the effective action in density-functional theory and Berry’s phase. Phys Rev A 54:3916

    Article  CAS  Google Scholar 

  43. van Leeuwen R (1998) Causality and symmetry in time-dependent density-functional theory. Phys Rev Lett 80:1280

    Article  Google Scholar 

  44. Vignale G (2008) Real-time resolution of the causality paradox of time-dependent density-functional theory. Phys Rev A 77:062511

    Article  Google Scholar 

  45. March NH, Young WH (1959) Approximate solutions of the density matrix equation for a local average field. Nucl Phys 12:237

    Article  Google Scholar 

  46. Holas A, March NH (1995) Exact exchange-correlation potential and approximate exchange potential in terms of density-matrices. Phys Rev A 51:2040

    Article  CAS  Google Scholar 

  47. Valdemoro C (1992) Approximating the second-order reduced density matrix in terms of the first-order one. Phys Rev A 45:4462

    Article  Google Scholar 

  48. Dreuw A, Fleming GR, Head-Gordon M (2003) Chlorophyll fluorescence quenching by xanthophylls. Phys Chem Chem Phys 5:3247

    Article  CAS  Google Scholar 

  49. Tozer DJ, Amos RD, Handy NC, Roos BJ, Serrano-Andres L (1999) Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol Phys 97:859

    Article  CAS  Google Scholar 

  50. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009

    Article  CAS  Google Scholar 

  51. Dreuw A, Weismann JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent. J Chem Phys 119:2943

    Article  CAS  Google Scholar 

  52. Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin–bacterlochlorin and bacteriochlorophyll–spheroidene complexes. J Am Chem Soc 126:4007

    Article  CAS  Google Scholar 

  53. Tozer DJ (2003) Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory. J Chem Phys 119:12697

    Article  CAS  Google Scholar 

  54. van Faassen M, de Boeij PL, van Leeuwen R, Berger JA, Snijders JG (2003) Application of time-dependent current-density-functional theory to nonlocal exchange-correlation effects in polymers. J Chem Phys 118:1044

    Article  Google Scholar 

  55. March NH, Niehaus TA, Suhai S (2006) Influence of the noninteracting density response function on the exchange-only kernel in time-dependent density-functional theory. Phys Rev A 74:044502

    Article  Google Scholar 

  56. Maitra NT, van Leeuwen R, Burke K (2008) Comment on “Critique of the foundations of time-dependent density functional theory”. Phys Rev A 78:056501

    Article  Google Scholar 

  57. Schirmer J, Dreuw A (2008) Reply to “Comment on ‘Critique of the foundations of time-dependent density functional theory”’. Phys Rev A 78:056502

    Article  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge that the present article was brought to fruition during a visit of both authors to the Division of Molecular Biophysics at the German Cancer Research Center (DKFZ). It is a pleasure to thank Professor S. Suhai for generous hospitality and for arranging a Scholarship to support the visit. Finally NHM thanks Prof. A. Rubio for valuable discussions pertaining to charge-transfer excitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Niehaus.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niehaus, T.A., March, N.H. Brief review related to the foundations of time-dependent density functional theory. Theor Chem Acc 125, 427–432 (2010). https://doi.org/10.1007/s00214-009-0578-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0578-0

Keywords

Navigation