Skip to main content
Log in

A configurational and conformational study of aframodial and its diasteriomers via experimental and theoretical VA and VCD spectroscopies

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work we present the experimental and theoretical vibrational absorption (VA) and the theoretical vibrational circular dichroism (VCD) spectra for aframodial. In addition, we present the theoretical VA and VCD spectra for the diasteriomers of aframodial. Aframodial has four chiral centers and hence has 24 = 16 diasteriomers, which occur in eight pairs of enantiomers. In addition to the four chiral centers, there is an additional chirality due to the helicity of the entire molecule, which we show by presenting 12 configurations of the 5S,8S,9R,10S enantiomer of aframodial. The VCD spectra for the diasteriomers and the 12 configurations of one enantiomer are shown to be very sensitive not only to the local stereochemistry at each chiral center, but in addition, to the helicity of the entire molecule. Here one must be careful in analyzing the signs of the VCD bands due to the ‘non-chiral’ chromophores in the molecule, since one has two contributions; one due to the inherent chirality at the four chiral centers, and one due to the chirality of the side chain groups in specific conformers, that is, its helicity. Theoretical simulations for various levels of theory are compared to the experimental VA recorded to date. The VCD spectra simulations are presented, but no experimental VCD and Raman spectra have been reported to date, though some preliminary VCD measurements have been made in Stephens’ lab in Los Angeles. The flexible side chain is proposed to be responsible for the small size of the VCD spectra of this molecule, even though the chiral part of the molecule is very rigid and has four chiral centers. In addition to VCD and Raman measurements, Raman optical activity (ROA) measurements would be very enlightening, as in many cases bands which are weak in both the VA and VCD, may be large in the Raman and/or ROA spectra. The feasibility of using vibrational spectroscopy to monitor biological structure, function and activity is a worthy goal, but this work shows that a careful theoretical analysis is also required, if one is to fully utilize and understand the experimental results. The reliability, reproduceability and uniqueness of the vibrational spectroscopic experiments and the information which can be gained from them is discussed, as well as the details of the computation of VA, VCD and Raman (and ROA) spectroscopy for molecules of the complexity of aframodial, which have multiple chiral centers and flexible side chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimbu SF, Njimi TK, Sondengam BL, Akinniyi JA, Connolly JD (1979) J Chem Soc Perkin Trans I, pp 1303–1304

  2. Marlier M, Le Guellec G, Lognay G, Wathelet JP and Severin M (1993). Planta Med 59: 455

    Article  CAS  Google Scholar 

  3. Nyasse B and Lenta-Ndjakou B (2000). Pharmazie 55: 703

    CAS  Google Scholar 

  4. Duker-Eshun G, Jaroszewski JW, Asomaning WA, Oppong-Boachie F, Olsen CE and Christensen SB (2002). Planta Med 68: 642

    Article  CAS  Google Scholar 

  5. Tanabe M, Chen Y-D, Saito K and Kano Y (1993). Chem Pharmaceutial Bull 41: 710

    CAS  Google Scholar 

  6. Klyne W and Buckingham J (1978). Atlas of Stereochemistry, 2nd edn. vol 1. Chapman & Hall, London

    Google Scholar 

  7. Barltrop JA, Bigley DB (1959) Chem Ind London, pp 1378–1379

  8. Jalkanen KJ, Bohr HG, Suhai S (1997) In: Proceedings of the international symposium on theoretical and computational genome research. Suhai S (ed) Plenum Press, New York, pp 255–277

  9. Tajkhorshid E, Jalkanen KJ and Suhai S (1998). J Phys Chem B 102: 5899

    Article  CAS  Google Scholar 

  10. Frimand K, Jalkanen KJ, Bohr HG and Suhai S (2000). Chem Phys 255: 165

    Article  CAS  Google Scholar 

  11. Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E and Suhai S (2001). Chem Phys 265: 125

    Article  CAS  Google Scholar 

  12. Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2007) Theor Chem Acc doi:10.1007/s00214-007-0361-z

  13. Jalkanen KJ, Suhai S (1996) Chem Phys 208 (1996)

  14. Deng Z, Polavarapu PL, Ford SJ, Hecht L, Barron LD, Ewig CS and Jalkanen KJ (1996). J Phys Chem 100: 2025

    Article  CAS  Google Scholar 

  15. Han W-G, Jalkanen KJ, Elstner M and Suhai S (1998). J Phys Chem B 102: 2587

    Article  CAS  Google Scholar 

  16. Bohr HG, Jalkanen KJ, Frimand K, Elstner M and Suhai S (1999). Chem Phys 246: 13

    Article  CAS  Google Scholar 

  17. Knapp-Mohammady M, Jalkanen KJ, Nardi F, Wade RC and Suhai S (1999). Chem Phys 240: 63

    Article  CAS  Google Scholar 

  18. Jalkanen KJ, Nieminen RM, Knapp-Mohammady M and Suhai S (2003). Int J Quantum Chem 92: 239

    Article  CAS  Google Scholar 

  19. Bunte SW, Jensen GM, McNesby KL, Goodin DB, Chabalowski CF, Nieminen RM, Suhai S and Jalkanen KJ (2001). Chem Phys 265: 13

    Article  CAS  Google Scholar 

  20. Jürgensen VW and Jalkanen KJ (2006). Phys Biol 3: S63

    Article  CAS  Google Scholar 

  21. Jalkanen KJ, Jürgensen VW and Degtyarenko IM (2005). Adv Quantum Chemistry 50: 91

    Article  CAS  Google Scholar 

  22. Jalkanen KJ (2003). J Phys Condens, Matter 15: S1823

    Article  CAS  Google Scholar 

  23. Poon C-D, Samulski ET, Weise CF and Weisshaar JC (2000). J Am Chem Soc 122: 5642

    Article  CAS  Google Scholar 

  24. Weise CF and Weisshaar JC (2003). J Phys Chem B 107: 3265

    Article  CAS  Google Scholar 

  25. Kongsted J, Osted A, Mikkelsen KV and Christiansen O (2002). Chem Phys Lett 364: 379

    Article  CAS  Google Scholar 

  26. Gibson DA, Ionova IV and Carter EA (1995). Chem Phys Lett 240: 261

    Article  CAS  Google Scholar 

  27. Pakoulev A, Wang Z, Pang Y and Dlott DD (2003). Chem Phys Lett 380: 404

    Article  CAS  Google Scholar 

  28. Chestnut DB (2003). Chem Phys Lett 380: 251

    Article  CAS  Google Scholar 

  29. Elstner M, Hobza P, Suhai S and Kaxiras E (2001). J Chem Phys 114: 5149

    Article  CAS  Google Scholar 

  30. Hamm P, Woutersen S and Rueping M (2002). Helvetica Chemica Acta 85: 3883

    Article  CAS  Google Scholar 

  31. Woutersen S, Mu Y, Stock G and Hamm P (2001). PNAS 98: 11254

    Article  CAS  Google Scholar 

  32. Woutersen S and Hamm P (2000). J Phys Chem B 104: 11316

    Article  CAS  Google Scholar 

  33. Morita H, Itokawa H (1986) Chem Lett pp 1205–1208

  34. Itokawa H, Morita M and Mihashi S (1980). Chem Pharm Bull 28: 3452

    CAS  Google Scholar 

  35. Morita H and Itokawa H (1988). Planta Med 54: 117

    Article  CAS  Google Scholar 

  36. Ngo KS and Brown GD (1998). Phytochemistry 47: 1117

    Article  CAS  Google Scholar 

  37. Kimbu SF, Njimi TK, Sondengam BL, Akinniyi JA, Connolly JD (1979) J Chem Soc, Perkin Trans

  38. Ayafor JF, Tchuedem MHK, Nyasse B, Tillequin F and Anke H (1994). Pure Appl Chem 66: 2327

    Article  CAS  Google Scholar 

  39. Morita H and Itokawa H (1988). Plant Med 54: 117

    Article  CAS  Google Scholar 

  40. MacMillan J, Beale MH (1999) Diterpene biosynthesis, (Amsterdam Elsevier), Chap, Isoprenoids including carotenoids and steroids pp 217–243

  41. Frisch Æ, Dennington III RD, Keith TA, Millam J, Nielsen AB, Holder AJ, Hiscocks J (1998) GaussView 2.0 Visualization Program, Gaussian, Inc., Wallingford

  42. Devlin FJ and Stephens PJ (1987). Applied Spectroscopy 41: 1142

    Article  CAS  Google Scholar 

  43. Jalkanen KJ, Gale JD, Jalkanen GJ, McIntosh DF, El-Azhary AA, Jensen GM (2007) Theor Chem Acc. doi:10.1007/s00214-007-0391-6

  44. Amos RD (1987). Ab initio methods in quantum chemistry, Chap. Molecular property derivatives. Wiley, New York, 99–153

    Google Scholar 

  45. Amos RD, Handy NC, Jalkanen KJ and Stephens PJ (1987). Chem Phys Lett 133: 21

    Article  CAS  Google Scholar 

  46. Amos RD (1984). Chem Phys Lett 108: 185

    Article  CAS  Google Scholar 

  47. Amos RD, Jalkanen KJ and Stephens PJ (1988). J Phys Chem 92: 5571

    Article  CAS  Google Scholar 

  48. Mead CA and Moscowitz A (1967). Int J Quantum Chem 1: 243

    Article  CAS  Google Scholar 

  49. Amos RD (1986). Chem Phys Lett 124: 376

    Article  CAS  Google Scholar 

  50. Jalkanen KJ, Stephens PJ, Lazzeretti P and Zanasi R (1988). J Chem Phys 90: 3204

    Article  Google Scholar 

  51. Stephens PJ, Jalkanen KJ, Amos RD, Lazzeretti P and Zanasi R (1990). J Phys Chem 94: 1811

    Article  CAS  Google Scholar 

  52. Amos RD (1982). Chem Phys Lett 87: 23

    Article  CAS  Google Scholar 

  53. Nicu VP, Neugebauer J, Wolff SK, Baerends EJ (2007) Theor Chem Acc doi:10.1007/s00214-006-0234-x

  54. Deplazes E, van Bronswijk B, Zhu F, Barron LD, Ma S, Nafie LA, Jalkanen KJ (2007) Theor Chem Acc doi:10.1007/s00214-007-0276-8

  55. Hsu EC and Holzwarth G (1973). J Chem Phys 59: 4678

    Article  CAS  Google Scholar 

  56. Nafie LA, Cheng JC and Stephens PJ (1975). J Am Chem Soc 97: 3842

    Article  CAS  Google Scholar 

  57. Cheng JC, Nafie LA and Stephens PJ (1975). J Opt Soc Am 65: 1031

    Article  CAS  Google Scholar 

  58. Nafie LA, Keiderling TA and Stephens PJ (1976). J Am Chem Soc 98: 2715

    Article  CAS  Google Scholar 

  59. Holzwarth G, Hsu EC, Mosher HS, Faulkner TR and Moscowitz A (1974). J Am Chem Soc 96: 251

    Article  CAS  Google Scholar 

  60. Keideling TA and Nafie LA (1976). Chem Phys Lett 41: 46

    Article  Google Scholar 

  61. Schlosser DW, Devlin F, Jalkanen K and Stephens PJ (1982). Chem Phys Lett 88: 286

    Article  CAS  Google Scholar 

  62. Bosnich B, Ozin G and Moscowitz (1972). J Am Chem Soc 94: 4750

    Article  CAS  Google Scholar 

  63. Barron LD, Bogaard MP and Buckingham AD (1973). J Am Chem Soc 95: 603

    Article  CAS  Google Scholar 

  64. Schellman JA (1973). J Chem Phys 58: 2882

    Article  Google Scholar 

  65. Stephens PJ, Jalkanen KJ and Kawiecki RW (1990). J Am Chem Soc 112: 6518

    Article  CAS  Google Scholar 

  66. Cohan NV and Hameka HF (1966). J Am Chem Soc 88: 2136

    Article  CAS  Google Scholar 

  67. Stephens PJ (1985). J Phys Chem 89: 748

    Article  CAS  Google Scholar 

  68. Stephens PJ (1987). J Phys Chem 91: 1712

    Article  CAS  Google Scholar 

  69. Buckingham AD, Fowler PW and Galwas PA (1987). Chem Phys 112: 1

    Article  CAS  Google Scholar 

  70. Craig DP and Thirunamachandran T (1978). Mol Phys 35: 825

    Article  CAS  Google Scholar 

  71. Barron LD and Buckingham AD (1971). Mol Phys 20: 1111

    Article  CAS  Google Scholar 

  72. Buckingham AD (1967). Adv Chem Phys 12: 107

    Article  CAS  Google Scholar 

  73. Jalkanen KJ, Stephens PJ, Amos RD and Handy NC (1988). J Phys Chem 92: 1781

    Article  CAS  Google Scholar 

  74. Bak KL, Jørgensen P, Helgaker T, Ruud K and Jensen HJAa (1993). J Chem Phys 98: 8873

    Article  CAS  Google Scholar 

  75. Bak KL, Jørgensen P, Helgaker T, Ruud K and Jensen HJAa (1994). J Chem Phys 100: 6621

    Article  Google Scholar 

  76. Bak KL, Devlin FJ, Ashvar CS, Taylor PR, Frisch MJ and Stephens PJ (1995). J Phys Chem 99: 14918

    Article  CAS  Google Scholar 

  77. Hansen AE, Stephens PJ and Bouman TD (1991). J Phys Chem 95: 4255

    Article  CAS  Google Scholar 

  78. Cao X, Dukor RK, Nafie LA (2007) Theor Chem Acc doi:10.1007/s00214-007-0284-8

  79. Stephens PJ, Devlin FJ, Schürch S, Hulliger J (2007) Theor Chem Acc doi:10.1007/s00214-006-0245-7

  80. Fristrup P, Lassen PR, Tanner D, Jalkanen KJ (2007) Theor Chem Acc doi:10.1007/s00214-006-0186-1

  81. Kim J, Kapitan J, Lakhani A, Bour P, Keiderling TA (2007) Theor Chem Acc doi:10.1007/s00214-006-0183-4

  82. Hug W, Fedorovsky M (2006) Theor Chem Acc doi:10.1007/s00214-006-0185-2

  83. Nafie LA (2007) Theor Chem Acc doi:10.1007/s00214-007-0267-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Jalkanen.

Additional information

Festschrift in Honor of Philip J. Stephens’ 65th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalkanen, K.J., Gale, J.D., Lassen, P.R. et al. A configurational and conformational study of aframodial and its diasteriomers via experimental and theoretical VA and VCD spectroscopies. Theor Chem Account 119, 177–190 (2008). https://doi.org/10.1007/s00214-007-0390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0390-7

Keywords

Navigation