Skip to main content
Log in

Relativistic Quadruple-Zeta and Revised Triple-Zeta and Double-Zeta Basis Sets for the 4p, 5p, and 6p Elements

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Relativistic basis sets of quadruple-zeta quality have been optimized at the self-consistent field (SCF) level with a Gaussian nuclear charge distribution for the 4p, 5p and 6p elements. To these sets, a valence correlating 3d2f1g set was optimized in multireference CI calculations on the valence pn states, and a correlating 3f2g1h set was optimized on the same states, to correlate the (n−1)d shell. The SCF d sets were reoptimized with the valence correlating d set included in the SCF calculation and held fixed. The d sets of the double-zeta and triple-zeta basis sets reported previously were also reoptimized in this manner, and a larger s set was introduced into the double-zeta basis sets for the 5p elements. Likewise, the SCF f sets for the 6p elements were reoptimized with the valence correlating f functions added and held fixed. Prescriptions are given for constructing contracted basis sets. The basis sets are available as an internet archive and from the Dirac program web site, http://dirac.chem.sdu.dk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsuchiya T, Abe M, Nakajima T, Hirao K (2001). J Chem Phys 115:4463

    Article  CAS  Google Scholar 

  2. Nakajima T, Hirao K (2002). J Chem Phys 116:8270

    Article  CAS  Google Scholar 

  3. Koga T, Tatewaki H, Matsuoka O (2001). J Chem Phys 115:3561

    Article  CAS  Google Scholar 

  4. Koga T, Tatewaki H, Matsuoka O (2002). J Chem Phys 117:7813

    Article  CAS  Google Scholar 

  5. Koga T, Tatewaki H, Matsuoka O (2003). J Chem Phys 119:1279

    Article  CAS  Google Scholar 

  6. Fægri K Jr (2001). Theor Chem Acc 105:252

    Article  Google Scholar 

  7. Fægri K Jr (2001). Chem Phys 311:25

    Article  Google Scholar 

  8. Dyall KG (1998). Theor Chem Acc 99:366

    Article  CAS  Google Scholar 

  9. Dyall KG (2002). Theor Chem Acc 108:365

    CAS  Google Scholar 

  10. Dyall KG (2002). Theor Chem Acc 108:335

    CAS  Google Scholar 

  11. Dyall KG (2004). Theor Chem Acc 112:403

    Article  CAS  Google Scholar 

  12. Malli GL, Da Silva ABF, Ishikawa Y (1993). Phys Rev A 47:143

    Article  CAS  Google Scholar 

  13. Malli GL, Da Silva ABF, Ishikawa Y (1994). J Chem Phys 101:6829

    Article  Google Scholar 

  14. Tatewaki H, Watanabe Y (2004). J Chem Phys 121:4528

    Article  CAS  Google Scholar 

  15. Osanai Y, Noro T, Miyoshi E (2002). J Chem Phys 117:9623

    Article  CAS  Google Scholar 

  16. Noro T, Sekiya M, Osanai Y, Miyoshi E, Koga T (2003). J Chem Phys 119:5142

    Article  CAS  Google Scholar 

  17. Osanai Y, Noro T, Miyoshi E, Sekiya M, Koga T (2004). J Chem Phys 120:6408

    Article  CAS  Google Scholar 

  18. Dunning TH Jr (1989). J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  19. Kendall RA, Dunning TH Jr, Harrison RJ (1992). J Chem Phys 96:6769

    Article  Google Scholar 

  20. Woon DE, Dunning TH Jr (1993). J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  21. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999). J Chem Phys 110:7667

    Article  CAS  Google Scholar 

  22. Fægri K Jr, Dyall KG (2002). In: Schwerdtfeger P (ed). Relativistic electronic structure theory. Part 1. Fundamentals. Elsevier, Amsterdam.

  23. Peterson KA (2003). J Chem Phys 119:11099

    Article  CAS  Google Scholar 

  24. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003). J Chem Phys 119:11113

    Article  CAS  Google Scholar 

  25. Martin JML, Sundermann A (2001). J Chem Phys 114:3408

    Article  CAS  Google Scholar 

  26. Cao X, Dolg M (2001). J Chem Phys 115:7348

    Article  CAS  Google Scholar 

  27. Cao X, Dolg M, Stoll H (2003). J Chem Phys 118:487

    Article  CAS  Google Scholar 

  28. Dyall KG, Fægri K Jr (1996). Theor Chim Acta 94:39

    CAS  Google Scholar 

  29. Seth M, Shepard R, Wagner A, Dyall KG (2001). J Phys B 34:2383

    Article  CAS  Google Scholar 

  30. Visser O, Aerts PJC, Hegarty D, Nieuwpoort WC (1987). Chem. Phys. Lett. 134:34

    CAS  Google Scholar 

  31. Stanton RE, Havriliak S (1984). J Chem Phys 81:1910

    Article  CAS  Google Scholar 

  32. Quiney HM, Lærdahl JK, Saue T, Fægri K Jr (1998). Phys Rev A 57:920

    Article  CAS  Google Scholar 

  33. Wahlgren U, Sjøvoll M, Fagerli H, Gropen O, Schimmelpfennig B (1997). Theor Chem Acc 97:324

    CAS  Google Scholar 

  34. Visscher L, Saue T (2000). J Chem Phys 113:3996

    Article  CAS  Google Scholar 

  35. Rakowitz F, Marian CM (1996). Chem Phys Lett 257:105

    Article  CAS  Google Scholar 

  36. Eliav E, Kaldor U, Ishikawa Y, Seth M, Pyykkö P (1996). Phys Rev A 53:3926

    Article  CAS  Google Scholar 

  37. Dyall KG (1994). J Chem Phys 100:2118

    Article  CAS  Google Scholar 

  38. Dyall KG (2001). J Chem Phys 115:9136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth G. Dyall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyall, K.G. Relativistic Quadruple-Zeta and Revised Triple-Zeta and Double-Zeta Basis Sets for the 4p, 5p, and 6p Elements. Theor Chem Acc 115, 441–447 (2006). https://doi.org/10.1007/s00214-006-0126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0126-0

Keywords

Navigation