Skip to main content
Log in

Long-term second-generation antipsychotics decreases bone formation and resorption in male patients with schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Patients with schizophrenia with second-generation antipsychotics (SGAs) treatment have shown an increased risk of bone fragility and susceptibility to fracture; however, it is still unclear whether this risk is derived from the effect of antipsychotics on balance of bone metabolism.

Objectives

We investigated the changes of two bone turnover biomarkers (BTMs) concentrations in people with schizophrenia receiving SGAs: procollagen type I aminoterminal propeptide (PINP) and C-terminal telopeptide of type I collagen (CTX-1) as BTMs of osteogenesis and bone resorption, respectively, to explore how antipsychotics contribute to bone fragility.

Methods

We recruited 59 Chinese male patients with schizophrenia (32 drug-naïve first-episode (DNFE) patients and 27 chronic patients) to undergo 8 weeks SGAs treatment. Fasting peripheral blood samples of pre- and posttreatment were collected, plasma levels of PINP and CTX-1 were measured.

Results

The interaction effects of group and time on PINP and CTX-1 concentrations were found (P = .016 and P = .008). There was a significant decrease for both BTMs concentrations of the posttreatment compared to the pretreatment (P<.001 and P = .003). Chronic patients had significantly higher changes of BTMs concentrations compared to DNFE patients (P = .048 and P = .024). There was a positive correlation of the two BTMs of pretreatment with disease course in DNFE group (r = .37, P = .039;r = .38, P = .035) and a negative correlation of PINP of pretreatment with age in the chronic group (r=-.40, P = .039).

Conclusion

Long-term SGAs medication inhibited osteogenesis in a dose- and time-dependent manner and damaged the balance of bone formation and bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SGA:

Second-Generation Antipsychotic

BMD:

Bone Mineral Density

BTM:

Bone Turnover Biomarker

BMI:

Body Mass Index

CTX-1:

C-terminal telopeptide of type I collagen

PINP:

procollagen type I aminoterminal propeptide

SD:

Standard Deviation

DNFE:

Drug-Naïve First-Episode

HDL:

High-Density Lipoprotein

LDL:

Low-Density Lipoprotein

ALT:

Alanine Aminotransferase

CHO:

Cholesterol

TG:

Triglyceride

GGT:

Gamma-Glutamyl Transferase

AST:

Aspartate Aminotransferase

ANOVAL:

Analysis of variance

ANCOVA:

Analysis of covariance

SBP:

Systolic Blood Pressure

DBP:

Diastolic Blood Pressure

TGF:

Transforming Growth Factor

References

  • Abraham G, Paing WW, Kaminski J, Joseph A, Kohegyi E, Josiassen RC (2003) Effects of elevated serum prolactin on bone mineral density and bone metabolism in female patients with schizophrenia: a prospective study. Am J Psychiatry 160:1618–1620

    Article  PubMed  Google Scholar 

  • Aljumaili W, Jain SB (2022) Atypical Antipsychotic Effect On Bone Mineral Density StatPearls, Treasure Island (FL)

  • Amoli MM, Khatami F, Arzaghi SM, Enayati S, Nejatisafa AA (2019) Over-expression of TGF-beta1 gene in medication free Schizophrenia. Psychoneuroendocrinology 99:265–270

    Article  CAS  PubMed  Google Scholar 

  • Appelman-Dijkstra NM, Papapoulos SE (2015) Modulating bone resorption and bone formation in Opposite directions in the treatment of postmenopausal osteoporosis. Drugs 75:1049–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias CF, Herrero MA, Echeverri LF, Oleaga GE, Lopez JM (2018) Bone remodeling: a tissue-level process emerging from cell-level molecular algorithms. PLoS ONE 13:e0204171

    Article  PubMed  PubMed Central  Google Scholar 

  • Azimi Manavi B, Stuart AL, Pasco JA, Hodge JM, Corney K, Berk M, Williams LJ (2020) Study protocol for the systematic review and meta-analyses of the association between schizophrenia and bone fragility. BMJ Open 10:e041859

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer D, Krege J, Lane N, Leary E, Libanati C, Miller P, Myers G, Silverman S, Vesper HW, Lee D, Payette M, Randall S (2012) National Bone Health Alliance bone turnover marker project: current practices and the need for US harmonization, standardization, and common reference ranges. Osteoporos Int 23:2425–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnason NH, Christiansen C (2000) Early response in biochemical markers predicts long-term response in bone mass during hormone replacement therapy in early postmenopausal women. Bone 26:561–569

    Article  CAS  PubMed  Google Scholar 

  • Chavassieux P, Portero-Muzy N, Roux JP, Garnero P, Chapurlat R (2015) Are biochemical markers of bone turnover representative of bone histomorphometry in 370 postmenopausal women? J Clin Endocrinol Metab 100:4662–4668

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Lane HY, Lin CH (2016) Effects of antipsychotics on Bone Mineral density in patients with Schizophrenia: gender differences. Clin Psychopharmacol Neurosci 14:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang Y, Fan K, Xu W, Teng C, Wang S, Tang W, Zhu X (2021) Association between gonadal hormones and osteoporosis in schizophrenia patients undergoing risperidone monotherapy: a cross-sectional study. PeerJ 9:e11332

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu YW, Chen WP, Yang AC, Tsai SJ, Hu LY, Lee SC, Lee YT, Shen CC (2022) Hip, vertebral, and wrist fracture risks and schizophrenia: a nationwide longitudinal study. BMC Psychiatry 22:77

    Article  PubMed  PubMed Central  Google Scholar 

  • De Hert M, Detraux J, Stubbs B (2016) Relationship between antipsychotic medication, serum prolactin levels and osteoporosis/osteoporotic fractures in patients with schizophrenia: a critical literature review. Exp Opin Drug Saf 15:809–823

    Article  CAS  Google Scholar 

  • Dehelean L, Romosan AM, Papava I, Bredicean CA, Dumitrascu V, Ursoniu S, Romosan RS (2020) Prolactin response to antipsychotics: an inpatient study. PLoS ONE 15:e0228648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demontiero O, Vidal C, Duque G (2012) Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis 4:61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastell R, O’Neill TW, Hofbauer LC, Langdahl B, Reid IR, Gold DT, Cummings SR (2016) Postmenopausal osteoporosis. Nat Rev Dis Primers 2:16069

    Article  PubMed  Google Scholar 

  • Fitzgerald I, O’Dwyer S, Brooks M, Sahm L, Crowley E, Ni Dhubhlaing C (2021) Worth the Weight? Olanzapine Prescribing in Schizophrenia. A review of Weight Gain and other Cardiometabolic Side effects of Olanzapine. Front Psychiatry 12:730769

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser LA, Liu K, Naylor KL, Hwang YJ, Dixon SN, Shariff SZ, Garg AX (2015) Falls and fractures with atypical antipsychotic medication use: a population-based cohort study. JAMA Intern Med 175:450–452

    Article  PubMed  Google Scholar 

  • Gallego JA, Blanco EA, Husain-Krautter S, Madeline Fagen E, Moreno-Merino P, Del Ojo-Jimenez JA, Ahmed A, Rothstein TL, Lencz T, Malhotra AK (2018) Cytokines in cerebrospinal fluid of patients with schizophrenia spectrum disorders: New data and an updated meta-analysis. Schizophr Res 202:64–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillett MJ, Vasikaran SD, Inderjeeth CA (2021) The role of PINP in diagnosis and management of metabolic bone disease. Clin Biochem Rev 42:3–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham SM, Howgate D, Anderson W, Howes C, Heliotis M, Mantalaris A, Tsiridis E, Tsapakis E (2011) Risk of osteoporosis and fracture incidence in patients on antipsychotic medication. Expert Opin Drug Saf 10:575–602

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Ren L, Hou L, Fan H, Wang C, Wang C, Li Y (2020) Paeoniflorin ameliorates antipsychotic-induced hyperprolactinemia in rats by attenuating impairment of the dopamine D2 receptor and TGF-beta1 signaling pathways in the hypothalamus and pituitary. J Ethnopharmacol 257:112862

    Article  CAS  PubMed  Google Scholar 

  • Jafari S, Fernandez-Enright F, Huang XF (2012) Structural contributions of antipsychotic drugs to their therapeutic profiles and metabolic side effects. J Neurochem 120:371–384

    Article  CAS  PubMed  Google Scholar 

  • Jha S, Chapman M, Roszko K (2019) When low bone Mineral Density and Fractures is not osteoporosis. Curr Osteoporos Rep 17:324–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansson H, Oden A, Kanis JA, McCloskey EV, Morris HA, Cooper C, Vasikaran S, Turnover I-IJWGSBMB (2014) A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int 94:560–567

    Article  CAS  PubMed  Google Scholar 

  • Kim BJ, Koh JM (2019) Coupling factors involved in preserving bone balance. Cell Mol Life Sci 76:1243–1253

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH (2020) Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 9

  • Kishimoto T, De Hert M, Carlson HE, Manu P, Correll CU (2012) Osteoporosis and fracture risk in people with schizophrenia. Curr Opin Psychiatry 25:415–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Krege JH, Lane NE, Harris JM, Miller PD (2014) PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos Int 25:2159–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo TR, Chen CH (2017) Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamerton AJ, Nicolaides AN, Sutton D, Eastcott HH (1985) The haemodynamic effects of percutaneous transluminal angioplasty. Int Angiol 4:93–97

    CAS  PubMed  Google Scholar 

  • Lassen NE, Andersen TL, Ploen GG, Soe K, Hauge EM, Harving S, Eschen GET, Delaisse JM (2017) Coupling of bone resorption and formation in Real Time: New Knowledge gained from human haversian BMUs. J Bone Min Res 32:1395–1405

    Article  CAS  Google Scholar 

  • Lee CY, Suzuki JB (2010) CTX biochemical marker of bone metabolism. Is it a reliable predictor of bisphosphonate-associated osteonecrosis of the jaws after surgery? Part II: a prospective clinical study. Implant Dent 19:29–38

    Article  CAS  PubMed  Google Scholar 

  • Li M (2016) Antipsychotic-induced sensitization and tolerance: behavioral characteristics, developmental impacts, and neurobiological mechanisms. J Psychopharmacol 30:749–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Wang Y, Liu X, Zhou Z, Wang J, Zhou H, Zheng L, Yang L (2019) Atypical antipsychotics induce human osteoblasts apoptosis via Wnt/beta-catenin signaling. BMC Pharmacol Toxicol 20:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Liu Y, Xing L, Yang X, Xu J, Ren Q, Su KP, Lu Y, Wang F (2020) Association of Cigarette Smoking with sleep disturbance and neurotransmitters in Cerebrospinal Fluid. Nat Sci Sleep 12:801–808

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Su YA, Zhao ZG, Gao N, Huang JZ, Tang MQ, Li KQ, Yang FD, Yu X, Si TM (2015) Acute effects of Haloperidol, Amisulpride, and quetiapine on bone turnover markers in patients with Schizophrenia. J Clin Psychopharmacol 35:583–586

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Huang KH, Chang YC, Huang YC, Hsu WC, Lin CY, Huang-Chih Chou F, Tsai GE, Lane HY (2012) Clozapine protects bone mineral density in female patients with schizophrenia. Int J Neuropsychopharmacol 15:897–906

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Lin CY, Wang HS, Lane HY (2019) Long-term use of Clozapine is protective for bone density in patients with Schizophrenia. Sci Rep 9:3895

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodhi RJ, Masand S, Malik A, Shivakumar K, McAllister VD, O’Keane V, Young LC, Heald AH, Sherwood RA, Aitchison KJ (2016) Changes in biomarkers of bone turnover in an aripiprazole add-on or switching study. Schizophr Res 170:245–251

    Article  PubMed  Google Scholar 

  • Matsuoka K, Park KA, Ito M, Ikeda K, Takeshita S (2014) Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Min Res 29:1522–1530

    Article  CAS  Google Scholar 

  • Nuti R, Brandi ML, Checchia G, Di Munno O, Dominguez L, Falaschi P, Fiore CE, Iolascon G, Maggi S, Michieli R, Migliaccio S, Minisola S, Rossini M, Sessa G, Tarantino U, Toselli A, Isaia GC (2019) Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med 14:85–102

    Article  PubMed  Google Scholar 

  • Okita K, Kanahara N, Nishimura M, Yoshida T, Yasui-Furukori N, Niitsu T, Yoshida T, Ishikawa M, Kimura H, Nomura F, Iyo M (2014) Second-generation antipsychotics and bone turnover in schizophrenia. Schizophr Res 157:137–141

    Article  PubMed  Google Scholar 

  • Rigler SK, Shireman TI, Cook-Wiens GJ, Ellerbeck EF, Whittle JC, Mehr DR, Mahnken JD (2013) Fracture risk in nursing home residents initiating antipsychotic medications. J Am Geriatr Soc 61:715–722

    Article  PubMed  PubMed Central  Google Scholar 

  • Rucci N (2008) Molecular biology of bone remodelling. Clin Cases Min Bone Metab 5:49–56

    Google Scholar 

  • Shieh A, Han W, Ishii S, Greendale GA, Crandall CJ, Karlamangla AS (2016) Quantifying the balance between total bone formation and total bone resorption: an index of net bone formation. J Clin Endocrinol Metab 101:2802–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui JA, Partridge NC (2016) Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology (Bethesda) 31: 233 – 45

  • Sims NA, Martin TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 3:481

    Article  PubMed  PubMed Central  Google Scholar 

  • Stubbs B, De Hert M, Sepehry AA, Correll CU, Mitchell AJ, Soundy A, Detraux J, Vancampfort D (2014) A meta-analysis of prevalence estimates and moderators of low bone mass in people with schizophrenia. Acta Psychiatrica Scandinavica 130:470–486

    Article  CAS  PubMed  Google Scholar 

  • Sullivan GM, Feinn R (2012) Using effect size-or why the P value is not enough. J Grad Med Educ 4:279–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai KY, Lee CC, Chou YM, Shen SP, Su CY, Wu HC, Huang MW, Shie JP, Chou FH (2014) The risks of major osteoporotic fractures in patients with schizophrenia: a population-based 10-year follow-up study. Schizophr Res 159:322–328

    Article  PubMed  Google Scholar 

  • Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T, Kanis JA (2011) International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49:1271–1274

    Article  CAS  PubMed  Google Scholar 

  • Vujasinovic M, Nezirevic Dobrijevic L, Asplund E, Rutkowski W, Dugic A, Kahn M, Dahlman I, Saaf M, Hagstrom H, Lohr JM (2021) Low Bone Mineral Density and Risk for Osteoporotic Fractures in Patients with Chronic Pancreatitis. Nutrients 13

  • Wang M, Hou R, Jian J, Mi G, Qiu H, Cao B, Tang M (2014) Effects of antipsychotics on bone mineral density and prolactin levels in patients with schizophrenia: a 12-month prospective study. Hum Psychopharmacol 29:183–189

    Article  PubMed  Google Scholar 

  • Weerasinghe DK, Hodge JM, Pasco JA, Samarasinghe RM, Azimi Manavi B, Williams LJ (2023) Antipsychotic-induced bone loss: the role of dopamine, serotonin and adrenergic receptor signalling. Front Cell Dev Biol 11:1184550

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo JI, Park AJ, Lim YK, Kweon OJ, Choi JH, Do JH, Kim S, Kim Y, Ha YC (2018) Age-related reference intervals for total Collagen-I-N-terminal Propeptide in healthy Korean Population. J Bone Metab 25:235–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Chen DC, Tan YL, An HM, Zunta-Soares GB, Huang XF, Soares JC (2015) Glucose disturbances in first-episode drug-naive schizophrenia: relationship to psychopathology. Psychoneuroendocrinology 62:376–380

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Deng L, Wu H, Lu X, Peng L, Wu R, Guo W, Chen J, Li L, Zhao J (2016) Relationship between long-term use of a typical antipsychotic medication by Chinese schizophrenia patients and the bone turnover markers serum osteocalcin and beta-CrossLaps. Schizophr Res 176:259–263

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the participants for their willingness to participate in the study and the time that they devoted to the study.

Funding

This work was supported by the following grants: the Technology Support Project of Xinjiang (2017E0267), the “Qingmiao” program of Beijing Municipal Hospital Management Center (QML20212003), the 10th Inner Mongolia Autonomous Region ‘Prairie excellence’ Project, Natural Science Foundation of Xinjiang Province (2017D01C245 and 2018D01C228), Tianshan Youth Project-Outstanding Youth Science and Technology Talents of Xinjiang (2017Q007), and Beijing Natural Science Foundation (7152074).

Role of the funder/sponsor statement The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Access to data and data analysis Dr. Wang had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Dr Wang and Ms. Li contributed equally to this work.

Author information

Authors and Affiliations

Authors

Contributions

FW designed the study and secured funding for the study. FW and HL led the drafting of the manuscript. HL led the statistical analyses. KY and QB provided clinical guide. YK and YW input the data. YK and BG finished lab test. QW and QM collected the clinical data. All authors approved the final manuscript for submission.

Corresponding author

Correspondence to Fan Wang.

Ethics declarations

Conflict of interest

The authors report no financial interests or potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Li, H., Yi, K. et al. Long-term second-generation antipsychotics decreases bone formation and resorption in male patients with schizophrenia. Psychopharmacology (2024). https://doi.org/10.1007/s00213-024-06592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00213-024-06592-y

Keywords

Navigation