Skip to main content

Advertisement

Log in

Effects of chronic methamphetamine exposure on rewarding behavior and neurodegeneration markers in adult mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Recreational and medical use of stimulants among young adults have gained popularity in the United States over the last decade and their use may increase vulnerability to brain biochemical changes and addictive behaviors. The long-term effects of chronic stimulant exposure in later adulthood have not been fully elucidated.

Our study investigated whether chronic exposure to methamphetamine (METH), at a dose designed to emulate human therapeutic dosing for ADHD, would promote biochemical alterations and affect sensitivity to the rewarding effects of subsequent METH dosing.

Groups of 3.5-month-old male and female C57BL/6J mice were administered non-contingent intraperitoneal injections of either saline or METH (1.4 mg/kg) twice a day for 1 month (5 days/week). METH (0.5 mg/kg)-induced conditioned place preference (CPP) was tested in mice to determine the effects of previous METH exposure on reward-related behavior. Mice were randomly assigned to Experiment I (males and females) or Experiment II (females only) in which CPP testing was respectively performed either 0.5 or 5 months after the end of METH injections, at ~5 or 10 months old respectively. The midbrain and striatum, regions involved in reward circuit, were assessed for markers associated with neurotoxicity, dopaminergic function, neuroinflammation and epigenetic changes after behavioral testing.

Previous exposure to chronic METH did not have significant short-term effects on CPP response but led to a decreased CPP response in 10-month-old females. Previous exposure to METH induced some short-term changes to biochemical markers measured in a brain region and sex-dependent manner, while long-term changes were only observed with GFAP and KDM5C.

In conclusion, our data suggest sex- and post-exposure duration-dependent outcomes and warrant further exploration of the long-term neurobehavioral consequences of psychostimulant use in both sexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilar-Valles A, Vaissière T, Griggs EM, Mikaelsson MA, Takács IF, Young EJ, Rumbaugh G, Miller CA (2014) Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation. Biol Psychiatry 76:57–65

    Article  CAS  PubMed  Google Scholar 

  • Andres MA, Cooke IM, Bellinger FP, Berry MJ, Zaporteza MM, Rueli RH, Barayuga SM, Chang L (2015) Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels. J Neurochem 134:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anker JJ, Carroll ME (2011) Females Are More Vulnerable to Drug Abuse than Males: Evidence from Preclinical Studies and the Role of Ovarian Hormones. In: Neill JC, Kulkarni J (eds) Biological Basis of Sex Differences in Psychopharmacology. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  • APA (2013) Diagnostic and statistical manual of mental disorders (5th ed.). APA

    Google Scholar 

  • Ashok AH, Mizuno Y, Volkow ND, Howes OD (2017) 'Association of Stimulant Use With Dopaminergic Alterations in Users of Cocaine, Amphetamine, or Methamphetamine: A Systematic Review and Meta-analysis', JAMA. Psychiatry 74:511–519

    Google Scholar 

  • Becker JB, Perry AN, Westenbroek C (2012) Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis. Biol Sex Differ 3:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker JB, Robinson TE, Lorenz KA (1982) Sex difference and estrous cycle variations in amphetamine-elicited rotational behavior. Eur J Pharmacol 80:65–72

    Article  CAS  PubMed  Google Scholar 

  • Bernath E, Kupina N, Liu MC, Hayes RL, Meegan C, Wang KK (2006) Elevation of cytoskeletal protein breakdown in aged Wistar rat brain. Neurobiol Aging 27:624–632

    Article  CAS  PubMed  Google Scholar 

  • Biederman J, Spencer TJ, Wilens TE, Weisler RH, Read SC, Tulloch SJ (2005) Long-term safety and effectiveness of mixed amphetamine salts extended release in adults with ADHD. CNS Spectr 10:16–25

    Article  PubMed  Google Scholar 

  • Biederman J, Mick E, Surman C, Doyle R, Hammerness P, Kotarski M, Spencer T (2010) A Randomized, 3-Phase, 34-Week, Double-Blind, Long-Term Efficacy Study of Osmotic-Release Oral System-Methylphenidate in Adults With Attention-Deficit/Hyperactivity Disorder. J Clin Psychopharmacol 30:549–553

    Article  CAS  PubMed  Google Scholar 

  • Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, Diksic M, Benkelfat C (2006) Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch Gen Psychiatry 63:1386–1395

    Article  CAS  PubMed  Google Scholar 

  • Buchanan JB, Sparkman NL, Johnson RW (2010) Methamphetamine sensitization attenuates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. Brain Behav Immun 24:502–511

    Article  CAS  PubMed  Google Scholar 

  • Bustamante D, You ZB, Castel MN, Johansson S, Goiny M, Terenius L, Hökfelt T, Herrera-Marschitz M (2002) Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem 83:645–654

    Article  CAS  PubMed  Google Scholar 

  • Zapata C, Lucas E, Cisternas CD, Sosa C, Garcia-Segura LM, Arevalo MA, Cambiasso MJ (2021) X-linked histone H3K27 demethylase Kdm6a regulates sexually dimorphic differentiation of hypothalamic neurons. Cell Mol Life Sci 78:7043–7060

    Article  Google Scholar 

  • Canedo T, Portugal CC, Socodato R, Almeida TO, Terceiro AF, Bravo J, Silva AI, Magalhães JD, Guerra-Gomes S, Oliveira JF, Sousa N, Magalhães A, Relvas JB, Summavielle T (2021) Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacology 46:2358–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H-H, Yang YK, Yeh TL, Cherng CFG, Hsu HC, Hsiao SY, Lung Y (2003) Methamphetamine-induced conditioned place preference is facilitated by estradiol pretreatment in female mice. Chin J Physiol 46:169–174

    CAS  PubMed  Google Scholar 

  • Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, Mufson EJ, Mash DC, Levey AI (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409:38–56

    Article  CAS  PubMed  Google Scholar 

  • Comer SD, Hart CL, Ward AS, Haney M, Foltin RW, Fischman MW (2001) Effects of repeated oral methamphetamine administration in humans. Psychopharmacology 155:397–404

    Article  CAS  PubMed  Google Scholar 

  • Cordeau P Jr, Lalancette-Hébert M, Weng YC, Kriz J (2008) Live Imaging of Neuroinflammation Reveals Sex and Estrogen Effects on Astrocyte Response to Ischemic Injury. Stroke 39:935–942

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Oliveira T, Rego A, Oliveira C (2013) Oxidative Stress and Drugs of Abuse: An Update. Mini-Rev Org Chem 10:321–334

    Article  CAS  Google Scholar 

  • Cunningham CL, Noble DC (1992) Methamphetamine-induced Conditioned Place Preference or Aversion Depending on Dose and Presence of Drug. Ann N Y Acad Sci 654:431–433

    Article  CAS  PubMed  Google Scholar 

  • Davis DL, Metzger DB, Vann PH, Wong JM, Subasinghe KH, Garlotte IK, Phillips NR, Shetty RA, Forster MJ, Sumien N (2022) Sex differences in neurobehavioral consequences of methamphetamine exposure in adult mice. Psychopharmacology (Berl) 239(7):2331–2349

    Article  CAS  PubMed  Google Scholar 

  • Davis EJ, Broestl L, Abdulai-Saiku S, Worden K, Bonham LW, Miñones-Moyano E, Moreno AJ, Wang D, Chang K, Williams G, Garay BI, Lobach I, Devidze N, Kim D, Anderson-Bergman C, Yu GQ, White CC, Harris JA, Miller BL et al (2020) A second X chromosome contributes to resilience in a mouse model of Alzheimer's disease. Sci Transl Med 12

  • DEA (2020) Drugs of Abuse: a DEA Resource Guide. Drug Enforcement Administration, U.S. Department of Justice, Washington DC

    Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Du L, Bayir H, Lai Y, Zhang X, Kochanek PM, Watkins SC, Graham SH, Clark RS (2004) Innate gender-based proclivity in response to cytotoxicity and programmed cell death pathway. J Biol Chem 279:38563–38570

    Article  CAS  PubMed  Google Scholar 

  • Faraone SV (2018) The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 87:255–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure A, Haberland U, Condé F, El Massioui N (2005) Lesion to the Nigrostriatal Dopamine System Disrupts Stimulus-Response Habit Formation. J Neurosci 25:2771–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favrod-Coune T, Broers B (2010) The Health Effect of Psychostimulants: A Literature Review. Pharmaceuticals (Basel, Switzerland) 3:2333–2361

    Article  CAS  PubMed  Google Scholar 

  • Friend DM, Keefe KA (2013) Glial reactivity in resistance to methamphetamine-induced neurotoxicity. J Neurochem 125:566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genova L, Berke J, Hyman SE (1997) Molecular Adaptations to Psychostimulants in Striatal Neurons: Toward a Pathophysiology of Addiction. Neurobiol Dis 4:239–246

    Article  CAS  PubMed  Google Scholar 

  • Godino A, Jayanthi S, Cadet JL (2015) Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics 10:574–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodman DW, Ginsberg L, Weisler RH, Cutler AJ, Hodgkins P (2005) An Interim Analysis of the Quality of Life, Effectiveness, Safety, and Tolerability (QU.E.S.T.) Evaluation of Mixed Amphetamine Salts Extended Release in Adults With ADHD. CNS Spectrums 10:26–34

    Article  PubMed  Google Scholar 

  • Halpin LE, Northrop NA, Yamamoto BK (2014) Ammonia mediates methamphetamine-induced increases in glutamate and excitotoxicity. Neuropsychopharmacology 39:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss AJ, Gibb JW (1980) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J Pharmacol Exp Ther 214:257–262

    CAS  PubMed  Google Scholar 

  • Ikegami D, Narita M, Imai S, Miyashita K, Tamura R, Narita M, Takagi S, Yokomizo A, Takeshima H, Ando T, Igarashi K, Kanno J, Kuzumaki N, Ushijima T, Suzuki T (2010) Epigenetic modulation at the CCR2 gene correlates with the maintenance of behavioral sensitization to methamphetamine. Addict Biol 15:358–361

    Article  CAS  PubMed  Google Scholar 

  • Ikekubo Y, Ide S, Hagino Y, Ikeda K (2020) Absence of methamphetamine-induced conditioned place preference in weaver mutant mice. Neuropsychopharmacol Rep 40:324–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itzhak Y, Ali SF (2002) Behavioral consequences of methamphetamine-induced neurotoxicity in mice: relevance to the psychopathology of methamphetamine addiction. Ann N Y Acad Sci 965:127–135

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi S, Deng X, Noailles PA, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J 18:238–251

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi S, McCoy MT, Chen B, Britt JP, Kourrich S, Yau H-J, Ladenheim B, Krasnova IN, Bonci A, Cadet JL (2014) Methamphetamine Downregulates Striatal Glutamate Receptors via Diverse Epigenetic Mechanisms. Biol Psychiatry 76:47–56

    Article  CAS  PubMed  Google Scholar 

  • Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, Janecke AR, Tariverdian G, Chelly J, Fryns J-P, Van Esch H, Kleefstra T, Hamel B, Moraine C, Gécz J, Turner G, Reinhardt R, Kalscheuer VM, Ropers H-H, Lenzner S (2005) Mutations in the JARID1C Gene, Which Is Involved in Transcriptional Regulation and Chromatin Remodeling, Cause X-Linked Mental Retardation. Am J Hum Genet 76:227–236

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of Addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed  Google Scholar 

  • Kuhn BN, Kalivas PW, Bobadilla A-C (2019) Understanding Addiction Using Animal Models. Front Behav Neurosci 13

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen J-A, Ding Q-Z, Guan-Yi L, Ning W, Rui-Bin S, Li F, Li J (2021) Behavioral sensitization induced by methamphetamine causes differential alterations in gene expression and histone acetylation of the prefrontal cortex in rats. BMC Neurosci 22:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin S-K, Pan WHT, Yeh P-H (2007) Prefrontal dopamine efflux during exposure to drug-associated contextual cues in rats with prior repeated methamphetamine. Brain Res Bull 71:365–371

    Article  CAS  PubMed  Google Scholar 

  • Lorrain DM, Arnold GM, Vezina P (2000) Previous exposure to amphetamine increases incentive to obtain the drug: Long-lasting effects revealed by the progressive ratio schedule. Behav Brain Res 107:9–19

    Article  CAS  PubMed  Google Scholar 

  • Madden DR (2002) 'The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3:91–101

    Article  CAS  PubMed  Google Scholar 

  • Mark KA, Soghomonian J-J, Yamamoto BK (2004) High-Dose Methamphetamine Acutely Activates the Striatonigral Pathway to Increase Striatal Glutamate and Mediate Long-Term Dopamine Toxicity. J Neurosci 24:11449–11456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCabe SE, Schulenberg JE, Schepis TS, Evans-Polce RJ, Wilens TE, McCabe VV, Veliz PT (2022) Trajectories of Prescription Drug Misuse Among US Adults From Ages 18 to 50 Years. JAMA Netw Open 5:e2141995–e2141e95

    Article  PubMed  PubMed Central  Google Scholar 

  • McCowan TJ, Dhasarathy A, Carvelli L (2015) The Epigenetic Mechanisms of Amphetamine. J Addict Prev 2015. https://doi.org/10.13188/2330-2178.S100001

  • Milesi-Hallé A, McMillan DE, Laurenzana EM, Byrnes-Blake KA, Owens SM (2007) Sex differences in (+)-amphetamine- and (+)-methamphetamine-induced behavioral response in male and female Sprague-Dawley rats. Pharmacol Biochem Behav 86:140–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Molinoff PB, Axelrod J (1971) Biochemistry of catecholamines. Annu Rev Biochem 40:465–500

    Article  CAS  PubMed  Google Scholar 

  • Nash JF, Yamamoto BK (1992) Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3, 4-methylenedioxymethamphetamine. Brain Res 581:237–243

    Article  CAS  PubMed  Google Scholar 

  • Nicola SM, Taha SA, Kim SW, Fields HL (2005) Nucleus accumbens dopamine release is necessary and sufficient to promote the behavioral response to reward-predictive cues. Neuroscience 135:1025–1033

    Article  CAS  PubMed  Google Scholar 

  • O'Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741–751

    CAS  PubMed  Google Scholar 

  • Paulson PE, Robinson TE (1996) Regional Differences in the Effects of Amphetamine Withdrawal on Dopamine Dynamics in the Striatum. Neuropsychopharmacology 14:325–337

    Article  CAS  PubMed  Google Scholar 

  • Poeta L, Padula A, Attianese B, Valentino M, Verrillo L, Filosa S, Shoubridge C, Barra A, Schwartz CE, Christensen J, van Bokhoven H, Helin K, Lioi MB, Collombat P, Gecz J, Altucci L, Di Schiavi E, Miano MG (2019) Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders. Hum Mol Genet 28:4089–4102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proebstl L, Kamp F, Manz K, Krause D, Adorjan K, Pogarell O, Koller G, Soyka M, Falkai P, Kambeitz J (2019) Effects of stimulant drug use on the dopaminergic system: A systematic review and meta-analysis of in vivo neuroimaging studies. Eur Psychiatry 59:15–24

    Article  PubMed  Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  • Renthal W, Carle TL, Maze I, Covington HE 3rd, Truong HT, Alibhai I, Kumar A, Montgomery RL, Olson EN, Nestler EJ (2008) Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure. J Neurosci 28:7344–7349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  CAS  PubMed  Google Scholar 

  • Roth ME, Carroll ME (2004) Sex differences in the acquisition of IV methamphetamine self-administration and subsequent maintenance under a progressive ratio schedule in rats. Psychopharmacology 172:443–449

    Article  CAS  PubMed  Google Scholar 

  • Sadakierska-Chudy A, Frankowska M, Jastrzębska J, Wydra K, Miszkiel J, Sanak M, Filip M (2017) Cocaine Administration and Its Withdrawal Enhance the Expression of Genes Encoding Histone-Modifying Enzymes and Histone Acetylation in the Rat Prefrontal Cortex. Neurotox Res 32:141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SAMHSA (2021) Key substance use and mental health indicators in the United States: Results from the 2020 National Survey on Drug Use and Health. Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, Rockville, MD

    Google Scholar 

  • Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3–13

    Article  CAS  PubMed  Google Scholar 

  • Scandaglia M, Lopez-Atalaya JP, Medrano-Fernandez A, Lopez-Cascales MT, Del Blanco B, Lipinski M, Benito E, Olivares R, Iwase S, Shi Y, Barco A (2017) Loss of Kdm5c Causes Spurious Transcription and Prevents the Fine-Tuning of Activity-Regulated Enhancers in Neurons. Cell Rep 21:47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulenberg JE, Patrick ME, Johnston LD, O’Malley PM, Bachman JG, Miech RA (2021) Monitoring the Future national survey results on drug use, 1975–2020: Volume II, College students and adults ages 19–60. Institute for social research

    Google Scholar 

  • Seiden LS, Fischman MW, Schuster CR (1976) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug Alcohol Depend 1:215–219

    Article  CAS  PubMed  Google Scholar 

  • Shetty RA, Rutledge MA, Forster MJ (2017) Retrograde conditioning of place preference and motor activity with cocaine in mice. Psychopharmacology 234:515–522

    Article  CAS  PubMed  Google Scholar 

  • Shimosato K, Ohkuma S (2000) Simultaneous Monitoring of Conditioned Place Preference and Locomotor Sensitization Following Repeated Administration of Cocaine and Methamphetamine. Pharmacol Biochem Behav 66:285–292

    Article  CAS  PubMed  Google Scholar 

  • Spencer TJ, Adler LA, McGough JJ, Muniz R, Jiang H, Pestreich L (2007) Efficacy and Safety of Dexmethylphenidate Extended-Release Capsules in Adults with Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 61:1380–1387

    Article  CAS  PubMed  Google Scholar 

  • Staszewski RD, Yamamoto BK (2006) Methamphetamine-induced spectrin proteolysis in the rat striatum. J Neurochem 96:1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Stone DJ, Song Y, Anderson CP, Krohn KK, Finch CE, Rozovsky I (1998) Bidirectional Transcription Regulation of Glial Fibrillary Acidic Protein by Estradiol in Vivo and in Vitro. Endocrinology 139:3202–3209

    Article  CAS  PubMed  Google Scholar 

  • Strahl BD, David Allis C (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  • Strakowski SM, Sax KW, Lee Rosenberg H, DelBello MP, Adler CM (2001) Human Response to Repeated Low-Dose d-Amphetamine: Evidence for Behavioral Enhancement and Tolerance. Neuropsychopharmacology 25:548–554

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    Article  CAS  PubMed  Google Scholar 

  • Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal Regulation of Glutamate Transporter Subtype Expression in Astrocytes. J Neurosci 17:932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taslimi Z, Komaki A, Haghparast A, Sarihi A (2018) Effects of Acute and Chronic Restraint Stress on Reinstatement of Extinguished Methamphetamine-induced Conditioned Place Preference in Rats. Basic Clin Neurosci 9:157–166

    Article  PubMed  PubMed Central  Google Scholar 

  • UNODC (2011) The non-medical use of prescription drugs: policy direction issues. In: United Nations Office at Vienna. 2021.World Drug Report. United Nations, Sales No. E.21.XI.8

    Google Scholar 

  • Swearingen V, Amanda ED, David Walker Q, Kuhn CM (2013) Sex differences in novelty- and psychostimulant-induced behaviors of C57BL/6 mice. Psychopharmacology 225:707–718

    Article  PubMed  Google Scholar 

  • Vanderklish PW, Bahr BA (2000) The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 81:323–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Fowler JS, Wang G-J, Swanson JM, Telang F (2007) Dopamine in Drug Abuse and Addiction: Results of Imaging Studies and Treatment Implications. Arch Neurol 64:1575–1579

    Article  PubMed  Google Scholar 

  • Walker QD, Ray R, Kuhn CM (2006) Sex Differences in Neurochemical Effects of Dopaminergic Drugs in Rat Striatum. Neuropsychopharmacology 31:1193–1202

    Article  CAS  PubMed  Google Scholar 

  • Warren MW, Zheng W, Kobeissy FH, Liu MC, Hayes RL, Gold MS, Larner SF, Wang KKW (2007) Calpain- and caspase-mediated αII-spectrin and tau proteolysis in rat cerebrocortical neuronal cultures after ecstasy or methamphetamine exposure. Int J Neuropsychopharmacol 10:479–489

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Burgoyne PS, Arnold AP (2002) Sex differences in sex chromosome gene expression in mouse brain. Hum Mol Genet 11:1409–1419

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Deng X, Watkins R, Disteche CM (2008) Sex-Specific Differences in Expression of Histone Demethylases Utx and Uty in Mouse Brain and Neurons. J Neurosci 28:4521–4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Zhu JPQ, Angulo JA (2005) Induction of striatal pre- and postsynaptic damage by methamphetamine requires the dopamine receptors. Synapse 58:110–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wang Y, Li Q, Zhong Y, Chen L, Yajun D, He J, Liao L, Xiong K, Yi C-x, Yan J (2018) The Main Molecular Mechanisms Underlying Methamphetamine- Induced Neurotoxicity and Implications for Pharmacological Treatment. Front Mol Neurosci 11

Download references

Acknowledgements

This work was supported by National Institutes of Health/National Institute on Aging T32 AG020494 and a seed grant from University of North Texas Health Science Center Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Sumien.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, D.L., Metzger, D.B., Vann, P.H. et al. Effects of chronic methamphetamine exposure on rewarding behavior and neurodegeneration markers in adult mice. Psychopharmacology 240, 1343–1358 (2023). https://doi.org/10.1007/s00213-023-06374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-023-06374-y

Keywords

Navigation