Skip to main content

Advertisement

Log in

Isoflurane produces antidepressant effects inducing BDNF-TrkB signaling in CUMS mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The volatile anesthetic isoflurane is suggested to produce a rapid and robust antidepressive effect in preliminary clinical trials. Recently, isoflurane was found to activate the tropomyosin receptor kinase B (TrkB) signaling which is the underlying mechanism of the rapid antidepressant ketamine.

Objective

Our study investigated the effect of isoflurane anesthesia on chronic unpredictable mild stressed (CUMS) model in mice and verified the role of brain-derived neurotrophic factor (BDNF)/TrkB/ the mammalian target of rapamycin (mTOR) signaling in the antidepressant effect of isoflurane.

Methods

We employed the CUMS model of depression to assess the rapid antidepressant effect of isoflurane by the forced swimming test (FST), the sucrose preference test (SPT), and the novelty suppressed feeding test (NSFT). The protein expression of BDNF and TrkB/protein kinase B (PKB or Akt)/mTOR was determined through Western blot. The dendritic spine density in the hippocampus and medial prefrontal cortex (PFC) was measured by the Golgi staining.

Results

A brief burst-suppressing isoflurane anesthesia rapidly reversed the behavioral deficits caused by CUMS procedure, normalized the expression of BDNF and further activated the TrkB signaling pathway in CUMS-induced stressed mice in both prefrontal cortex (PFC) and hippocampus (HC). All of those behavioral and proteomic effects were blocked by K252a, a selective receptor inhibitor of TrkB. Isoflurane significantly promoted the formation of dendritic spines in both medial prefrontal cortex (mPFC), CA1, CA3, and DG of the hippocampus.

Conclusion

Our study indicates that isoflurane exerts a rapid antidepressant-like effect in CUMS depression animal model, and the activation of BDNF/TrkB signaling pathway plays an indispensable role in the biological and behavioral antidepressant effects of isoflurane. A single exposure to isoflurane could repair synaptic damage caused by chronic stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah CG, Sanacora G, Duman RS, Krystal JH (2018) The neurobiology of depression, ketamine and rapid-acting antidepressants: is it glutamate inhibition or activation? Pharmacol Ther 190:148–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abelaira HM, Réus GZ, Neotti MV, Quevedo J (2014) The role of mTOR in depression and antidepressant responses. Life Sci 101(1–2):10–14

    CAS  PubMed  Google Scholar 

  • Abrams R (2002) Electroconvulsive therapy (ECT) practice in metropolitan New York community hospitals. Psychol Med 32(7):1323–1324 author reply 24-6

    PubMed  Google Scholar 

  • Adell A, Castro E, Celada P, Bortolozzi A, Pazos A, Artigas F (2005) Strategies for producing faster acting antidepressants. Drug Discov Today 10(8):578–585

    CAS  PubMed  Google Scholar 

  • Antila H, Ryazantseva M, Popova D, Sipilä P, Guirado R, Kohtala S, Yalcin I, Lindholm J, Vesa L, Sato V, Cordeira J, Autio H, Kislin M, Rios M, Joca S, Casarotto P, Khiroug L, Lauri S, Taira T, Castrén E, Rantamäki T (2017) Isoflurane produces antidepressant effects and induces TrkB signaling in rodents. Sci Rep 7(1):7811

    PubMed  PubMed Central  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354

    CAS  PubMed  Google Scholar 

  • Brown PL, Zanos P, Wang L, Elmer GI, Gould TD, Shepard PD (2018) Isoflurane but not halothane prevents and reverses helpless behavior: a role for EEG burst suppression? Int J Neuropsychopharmacol 21:777–785

    PubMed Central  Google Scholar 

  • Cai Y, Peng Z, Guo H, Wang F, Zeng Y (2017) TREK-1 pathway mediates isoflurane-induced memory impairment in middle-aged mice. Neurobiol Learn Mem 145:199–204

    CAS  PubMed  Google Scholar 

  • Carl C, Engelhardt W, Teichmann G, Fuchs G (1988) Open comparative study with treatment-refractory depressed patients: electroconvulsive therapy--anesthetic therapy with isoflurane (preliminary report). Pharmacopsychiatry 21(6):432–433

    CAS  PubMed  Google Scholar 

  • Castren E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7(1):18–21

    CAS  PubMed  Google Scholar 

  • Chandran A, Iyo AH, Jernigan CS, Legutko B, Austin MC, Karolewicz B (2013) Reduced phosphorylation of the mTOR signaling pathway components in the amygdala of rats exposed to chronic stress. Prog Neuro-Psychopharmacol Biol Psychiatry 40:240–245

    CAS  Google Scholar 

  • Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9:326–357

    CAS  PubMed  Google Scholar 

  • Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35(1):68–77

    CAS  Google Scholar 

  • Di Lieto A et al (2012) The responsiveness of TrkB to BDNF and antidepressant drugs is differentially regulated during mouse development. PLoS One 7(3):e32869

    PubMed  PubMed Central  Google Scholar 

  • Dincheva I, Lynch NB, Lee FS (2016) The role of BDNF in the development of fear learning. Depress Anxiety 33(10):907–916

    PubMed  PubMed Central  Google Scholar 

  • Dincheva I, Yang J, Li A, Marinic T, Freilingsdorf H, Huang C, Casey BJ, Hempstead B, Glatt CE, Lee FS, Bath KG, Jing D (2017) Effect of early-life fluoxetine on anxiety-like behaviors in BDNF Val66Met mice. Am J Psychiatry 174(12):1203–1213

    PubMed  PubMed Central  Google Scholar 

  • Drevets WC (1998) Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 49:341–361

    CAS  PubMed  Google Scholar 

  • Engelhardt W, Carl G, Hartung E (1993) Intra-individual open comparison of burst-suppression-isoflurane-anaesthesia versus electroconvulsive therapy in the treatment of severe depression. Eur J Anaesthesiol 10(2):113–118

    CAS  PubMed  Google Scholar 

  • Garcia LS et al (2009) Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 33(3):450–455

    CAS  Google Scholar 

  • Greenberg LB et al (1987) Isoflurane anesthesia therapy: a replacement for ECT in depressive disorders? Convuls Ther 3(4):269–277

    PubMed  Google Scholar 

  • Heurteaux C, Lucas G, Guy N, el Yacoubi M, Thümmler S, Peng XD, Noble F, Blondeau N, Widmann C, Borsotto M, Gobbi G, Vaugeois JM, Debonnel G, Lazdunski M (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9(9):1134–1141

    CAS  PubMed  Google Scholar 

  • Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33(2):67–75

    CAS  PubMed  Google Scholar 

  • Ignacio ZM et al (2016) New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol 82(5):1280–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasmi Y (2002) Electroconvulsive therapy and cognitive function. Ir J Psychol Med 19(2):70–71

    PubMed  Google Scholar 

  • Kato T, et al. (2017) ‘BDNF release and signaling are required for the antidepressant actions of GLYX-13’, Mol Psychiatry

  • Kohtala S, Theilmann W, Suomi T, Wigren HK, Porkka-Heiskanen T, Elo LL, Rokka A, Rantamäki T (2016) Brief isoflurane anesthesia produces prominent Phosphoproteomic changes in the adult mouse Hippocampus. ACS Chem Neurosci 7(6):749–756

    CAS  PubMed  Google Scholar 

  • Koinig G, Langer G (1988) Might “isoflurane Narcotherapy” replace ECT? Convuls Ther 4(1):98–99

    PubMed  Google Scholar 

  • Langer G, Neumark J, Koinig G, Graf M, Schönbeck G (1985) Rapid psychotherapeutic effects of anesthesia with isoflurane (ES narcotherapy) in treatment-refractory depressed patients. Neuropsychobiology 14(3):118–120

    CAS  PubMed  Google Scholar 

  • Langer G, Karazman R, Neumark J, Saletu B, Schönbeck G, Grünberger J, Dittrich R, Petricek W, Hoffmann P, Linzmayer L, Anderer P, Steinberger K (1995) Isoflurane narcotherapy in depressive patients refractory to conventional antidepressant drug treatment. A double-blind comparison with electroconvulsive treatment. Neuropsychobiology 31(4):182–194

    CAS  PubMed  Google Scholar 

  • Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS (2015) BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 18(1):pyu033

    Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, He X, Zhang Y, Qi X, Li H, Zhu X, He S (2011a) Brain-derived neurotrophic factor signalling mediates antidepressant effects of lamotrigine. Int J Neuropsychopharmacol 14(8):1091–1098

    CAS  PubMed  Google Scholar 

  • Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011b) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69(8):754–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lisanby SH (2007) Electroconvulsive therapy for depression. N Engl J Med 357(19):1939–1945

    CAS  PubMed  Google Scholar 

  • Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen BS (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26(30):7870–7874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu RJ, Aghajanian GK (2008) Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci U S A 105(1):359–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Louhivuori V, Vicario A, Uutela M, Rantamäki T, Louhivuori LM, Castrén E, Tongiorgi E, Åkerman KE, Castrén ML (2011) BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse. Neurobiol Dis 41(2):469–480

    CAS  PubMed  Google Scholar 

  • Malenka RC, Nestler EJ, Hyman SE (2009) Chapter 8: atypical neurotransmitters. In: Brown RY, Sydor A (eds) Molecular neuropharmacology: a Foundation for clinical neuroscience (2nd ed.). McGraw-Hill Medical, New York

    Google Scholar 

  • Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, Barde YA (2008) Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 11(2):131–133

    CAS  PubMed  Google Scholar 

  • Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, Viana MC, Andrade LH, Hu C, Karam EG, Ladea M, Medina-Mora ME, Ono Y, Posada-Villa J, Sagar R, Wells JE, Zarkov Z (2011) Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry 68(3):241–251

    PubMed  PubMed Central  Google Scholar 

  • Molendijk ML, van Tol MJ, Penninx BWJH, van der Wee NJA, Aleman A, Veltman DJ, Spinhoven P, Elzinga BM (2012) BDNF val66met affects hippocampal volume and emotion-related hippocampal memory activity. Transl Psychiatry 2:e74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris AJ, Roche SA, Bentham P, Wright J (2002) A dental risk management protocol for electroconvulsive therapy. J ECT 18(2):84–89

    PubMed  Google Scholar 

  • Mu RH, Fang XY, Wang SS, Li CF, Chen SM, Chen XM, Liu Q, Li YC, Yi LT (2016) Antidepressant-like effects of standardized gypenosides: involvement of brain-derived neurotrophic factor signaling in hippocampus. Psychopharmacology 233(17):3211–3221

    CAS  PubMed  Google Scholar 

  • Numakawa T, Adachi N, Richards M, Chiba S, Kunugi H (2013) Brain-derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system. Neuroscience 239:157–172

    CAS  PubMed  Google Scholar 

  • Nutt DJ, Ballenger JC, Sheehan D, Wittchen HU (2002) Generalized anxiety disorder: comorbidity, comparative biology and treatment. Int J Neuropsychopharmacol 5(4):315–325

    PubMed  Google Scholar 

  • Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE, Egan MF, Meyer-Lindenberg A, Weinberger DR (2004) The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 24(45):10099–10102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radley JJ, Morrison JH (2005) Repeated stress and structural plasticity in the brain. Ageing Res Rev 4(2):271–287

    PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45(9):1085–1098

    CAS  PubMed  Google Scholar 

  • Ramaker MJ, Dulawa SC (2017) Identifying fast-onset antidepressants using rodent models. Mol Psychiatry 22(5):656–665

    CAS  PubMed  Google Scholar 

  • Rantamaki T et al (2007) Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology 32(10):2152–2162

    CAS  PubMed  Google Scholar 

  • Rantamaki T et al (2011) Antidepressant drugs transactivate TrkB neurotrophin receptors in the adult rodent brain independently of BDNF and monoamine transporter blockade. PLoS One 6(6):e20567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castrén E (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23(1):349–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18(5–6):391–418

    CAS  PubMed  Google Scholar 

  • Si X-M et al. (2018) Low molecular mass chondroitin sulfate suppresses chronic unpredictable mild stress-induced depression-like behavior in mice (68) 361–71

  • Soares JC, Mann JJ (1997) The anatomy of mood disorders--review of structural neuroimaging studies. Biol Psychiatry 41(1):86–106

    CAS  PubMed  Google Scholar 

  • Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29(11):2007–2017

    PubMed  Google Scholar 

  • Tadler SC, Mickey BJ (2018) Emerging evidence for antidepressant actions of anesthetic agents. Curr Opin Anaesthesiol 31(4):439–445

    PubMed  Google Scholar 

  • Tadler S, Light A, Hughen R (2009) Isoflurane demonstrates antidepressant-like activity in a mouse model of depression (Abstract). Anesth Analg 108:212

    Google Scholar 

  • Tan X, du X, Jiang Y, Botchway BOA, Hu Z, Fang M (2018) Inhibition of autophagy in microglia alters depressive-like behavior via BDNF pathway in postpartum depression. Front Psychiatry 9:434

    PubMed  PubMed Central  Google Scholar 

  • Theilmann W, Alitalo O, Yorke I, Rantamäki T (2019) Dose-dependent effects of isoflurane on TrkB and GSK3beta signaling: importance of burst suppression pattern. Neurosci Lett 694:29–33

    CAS  PubMed  Google Scholar 

  • Vutskits L (2012) General anesthesia: a gateway to modulate synapse formation and neural plasticity? Anesth Analg 115(5):1174–1182

    CAS  PubMed  Google Scholar 

  • Vutskits L (2018) General anesthetics to treat major depressive disorder: clinical relevance and underlying mechanisms. Anesth Analg 126(1):208–216

    CAS  PubMed  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2007) VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci U S A 104(11):4647–4652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks HR III et al (2013) Antidepressant and neurocognitive effects of isoflurane anesthesia versus electroconvulsive therapy in refractory depression. PLoS One 8(7):e69809

    CAS  PubMed  PubMed Central  Google Scholar 

  • WHO ‘Depression Fact Sheet’, [Internet], (updated 22 March 2018a) <http://www.who.int/news-room/fact-sheets/detail/depression>, Accessed 22 March

  • WHO ‘Suicide Fact Sheet’ [Internet]. <http://www.who.int/news-room/fact-sheets/detail/depression>, Accessed 24 Aug 2018b

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134(4):319–329

    CAS  PubMed  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52(2):90–110

    CAS  PubMed  Google Scholar 

  • Willner P (2017) The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol Stress 6:78–93

    PubMed  Google Scholar 

  • Xu A, Cui S, Wang J-H (2015) Incoordination among Subcellular Compartments Is Associated with Depression-Like Behavior Induced by Chronic Mild Stress (19) pyv122

  • Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, Chen ZY, Mark W, Tessarollo L, Lee FS, Lu B, Hempstead BL (2009) Neuronal release of proBDNF. Nat Neurosci 12(2):113–115

    PubMed  PubMed Central  Google Scholar 

  • Ye D, Li Y, Zhang X, Guo F, Geng L, Zhang Q, Zhang Z (2015) TREK1 channel blockade induces an antidepressant-like response synergizing with 5-HT1A receptor signaling. Eur Neuropsychopharmacol 25(12):2426–2436

    CAS  PubMed  Google Scholar 

  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KSS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate Jr CA, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604):481–486

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by research grants from the National Natural Science Foundation of China (No. 31272397), the Natural Science Foundation of Shandong Province (No. ZR2011CM041), and the Qingdao Postdoctoral Application Research Project (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yu Jin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SS., Tian, YH., Jin, SJ. et al. Isoflurane produces antidepressant effects inducing BDNF-TrkB signaling in CUMS mice. Psychopharmacology 236, 3301–3315 (2019). https://doi.org/10.1007/s00213-019-05287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05287-z

Keywords

Navigation