Skip to main content
Log in

Alterations in brain activation in response to prolonged morphine withdrawal-induced behavioral inflexibility in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The inability to stop a repetitive maladaptive behavior is a main problem in addictive disorders. Neuroadaptations that are associated with behavioral inflexibility may be involved in compulsive drug use.

Objectives

The aim of the present study was to investigate the pattern of behavioral inflexibility during morphine withdrawal and map brain activation that is linked to alterations in flexibility.

Methods

We first analyzed the effects of chronic morphine exposure on reversal learning after 2-week (short-term) and 6-week (prolonged) morphine withdrawal. We then compared the level of neuronal activation using cFos immunohistochemistry in 15 brain areas between rats that underwent morphine withdrawal and saline-control rats after a test of reversal learning.

Results

Only prolonged morphine withdrawal impaired reversal learning. Rats that exhibited impairments in reversal learning presented a significant decrease in cFos expression in the orbitofrontal cortex (OFC), including the medial, lateral, and ventral OFC. cFos expression significantly increased in the dorsomedial striatum and major subregions of the medial prefrontal cortex (mPFC) in the morphine group. Rats that underwent prolonged morphine withdrawal exhibited no significant changes in cFos expression in the dorsolateral striatum, nucleus accumbens, amygdala, paraventricular thalamic nucleus, or motor cortex. The rats that underwent short-term withdrawal did not present any changes in cFos expression in any of these brain regions.

Conclusion

Altogether, these data suggest that alterations in the function of the frontal cortex and its striatal connections during the late morphine withdrawal phase may underlie the disruption of inhibitory control in opioid dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347

    Article  CAS  PubMed  Google Scholar 

  • Calu DJ, Stalnaker TA, Franz TM, Singh T, Shaham Y, Schoenbaum G (2007) Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learn Mem 14:325–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Caprioli D, Venniro M (2017) Role of dorsomedial striatum neuronal ensembles in incubation of methamphetamine craving after voluntary abstinence. J Neurosci 37:1014–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castane A, Theobald DE, Robbins TW (2010) Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav Brain Res 210:74–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Cicero TJ, Nock B, Meyer ER (2002) Gender-linked differences in the expression of physical dependence in the rat. Pharmacol Biochem Behav 72:691–697

    Article  CAS  PubMed  Google Scholar 

  • Cole RD, Poole RL, Guzman DM, Gould TJ, Parikh V (2015) Contributions of beta2 subunit-containing nAChRs to chronic nicotine-induced alterations in cognitive flexibility in mice. Psychopharmacology 232:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Everitt BJ, Robbins TW (2011) Impulsivity, compulsivity, and top-down cognitive control. Neuron 69:680–694

    Article  CAS  PubMed  Google Scholar 

  • Ersche KD, Roiser JP, Robbins TW, Sahakian BJ (2008) Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology 197:421–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond Ser B Biol Sci 363:3125–3135

    Article  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neurosci 8:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2013) From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev 37:1946–1954

    Article  PubMed  Google Scholar 

  • Ferry AT, Ongur D, An X, Price JL (2000) Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 425:447–470

    Article  CAS  PubMed  Google Scholar 

  • Fishbein DH, Krupitsky E, Flannery BA, Langevin DJ, Bobashev G, Verbitskaya E, Augustine CB, Bolla KI, Zvartau E, Schech B, Egorova V, Bushara N, Tsoy M (2007) Neurocognitive characterizations of Russian heroin addicts without a significant history of other drug use. Drug Alcohol Depend 90:25–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Floresco SB, Block AE, Tse MT (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190:85–96

    Article  PubMed  Google Scholar 

  • Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM (2003) It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci 26:184–192

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghods-Sharifi S, Haluk DM, Floresco SB (2008) Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiol Learn Mem 89:567–573

    Article  PubMed  Google Scholar 

  • Glass MJ, Kruzich PJ, Colago EE, Kreek MJ, Pickel VM (2005) Increased AMPA GluR1 receptor subunit labeling on the plasma membrane of dendrites in the basolateral amygdala of rats self-administering morphine. Synapse 58:1–12

    Article  CAS  PubMed  Google Scholar 

  • Glass MJ, Lane DA, Colago EE, Chan J, Schlussman SD, Zhou Y, Kreek MJ, Pickel VM (2008) Chronic administration of morphine is associated with a decrease in surface AMPA GluR1 receptor subunit in dopamine D1 receptor expressing neurons in the shell and non-D1 receptor expressing neurons in the core of the rat nucleus accumbens. Exp Neurol 210:750–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graybeal C, Feyder M, Schulman E, Saksida LM, Bussey TJ, Brigman JL, Holmes A (2011) Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat Neurosci 14:1507–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziane NM, Sun S, Wright WJ, Jang D, Liu Z, Huang YH, Nestler EJ, Wang YT, Schluter OM, Dong Y (2016) Nat Neurosci 19:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haluk DM, Floresco SB (2009) Ventral striatal dopamine modulation of different forms of behavioral flexibility. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 34:2041–2052

    Article  CAS  Google Scholar 

  • Hamilton DA, Brigman JL (2015) Behavioral flexibility in rats and mice: contributions of distinct frontocortical regions. Genes Brain Behav 14:4–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollander JA, Carelli RM (2007) Cocaine-associated stimuli increase cocaine seeking and activate accumbens core neurons after abstinence. J Neurosci 27:3535–3539

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo A, Jentsch JD (2012) Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology 219:607–620

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Pellis S, Robinson TE (2004) Plasticity and functions of the orbital frontal cortex. Brain Cogn 55:104–115

    Article  PubMed  Google Scholar 

  • Koya E, Uejima JL, Wihbey KA, Bossert JM, Hope BT, Shaham Y (2009) Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology 56(Suppl 1):177–185

    Article  CAS  PubMed  Google Scholar 

  • Lee JL, Milton AL, Everitt BJ (2006) Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J Neurosci 26:5881–5887

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Li FQ, Wang XY, Wu P, Zhao M, Xu CM, Shaham Y, Lu L (2008) Central amygdala extracellular signal-regulated kinase signaling pathway is critical to incubation of opiate craving. J Neurosci 28:13248–13257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y (2005) Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci 8:212–219

    Article  CAS  PubMed  Google Scholar 

  • Lucantonio F, Stalnaker TA, Shaham Y, Niv Y, Schoenbaum G (2012) The impact of orbitofrontal dysfunction on cocaine addiction. Nat Neurosci 15:358–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyvers M, Yakimoff M (2003) Neuropsychological correlates of opioid dependence and withdrawal. Addict Behav 28:605–611

    Article  PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  PubMed  Google Scholar 

  • McCracken CB, Grace AA (2013) Persistent cocaine-induced reversal learning deficits are associated with altered limbic cortico-striatal local field potential synchronization. J Neurosci 33:17469–17482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mickiewicz AL, Napier TC (2011) Repeated exposure to morphine alters surface expression of AMPA receptors in the rat medial prefrontal cortex. Eur J Neurosci 33:259–265

    Article  PubMed  Google Scholar 

  • Nesic J, Rusted J, Duka T, Jackson A (2011) Degree of dependence influences the effect of smoking on cognitive flexibility. Pharmacol Biochem Behav 98:376–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ornstein TJ, Iddon JL, Baldachino MD, Sahakian BJ (2000) Profiles of cognitive dysfunction in chronic amphetamine and heorin abusers. Neuropsychopharmacology 23:14

    Article  Google Scholar 

  • Ortega LA, Tracy BA, Gould TJ, Parikh V (2013) Effects of chronic low- and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behav Brain Res 238:134–145

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 1121:355–375

    Article  PubMed  Google Scholar 

  • Ragozzino ME, Ragozzino KE, Mizumori SJ, Kesner RP (2002) Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behav Neurosci 116:105–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranaldi R, Egan J, Kest K, Fein M, Delamater AR (2009) Repeated heroin in rats produces locomotor sensitization and enhances appetitive Pavlovian and instrumental learning involving food reward. Pharmacol Biochem Behav 91:351–357

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B (2004) Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci 19:1997–2002

    Article  PubMed  Google Scholar 

  • Shalev U, Morales M, Hope B, Yap J, Shaham Y (2001) Time-dependent changes in extinction behavior and stress-induced reinstatement of drug seeking following withdrawal from heroin in rats. Psychopharmacology 156:98–107

    Article  CAS  PubMed  Google Scholar 

  • Sorge RE, Rajabi H, Stewart J (2005) Rats maintained chronically on buprenorphine show reduced heroin and cocaine seeking in tests of extinction and drug-induced reinstatement. Neuropsychopharmacology 30:1681–1692

    Article  CAS  PubMed  Google Scholar 

  • Sparta DR, Hovelso N, Mason AO, Kantak PA, Ung RL, Decot HK, Stuber GD (2014) Activation of prefrontal cortical parvalbumin interneurons facilitates extinction of reward-seeking behavior. J Neurosci 34:3699–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stalnaker TA, Roesch MR, Calu DJ, Burke KA, Singh T, Schoenbaum G (2007) Neural correlates of inflexible behavior in the orbitofrontal-amygdalar circuit after cocaine exposure. Ann N Y Acad Sci 1121:598–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stalnaker TA, Roesch MR, Franz TM, Burke KA, Schoenbaum G (2006) Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. Eur J Neurosci 24:2643–2653

    Article  PubMed  PubMed Central  Google Scholar 

  • Torregrossa MM, Corlett PR, Taylor JR (2011) Aberrant learning and memory in addiction. Neurobiol Learn Mem 96:609–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran-Nguyen LT, Fuchs RA, Coffey GP, Baker DA, O’Dell LE, Neisewander JL (1998) Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal. Neuropsychopharmacology 19:48–59

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Gao H, Zhu H, Sun N, Ma Y, Lei H (2006) Neurochemical changes in brain induced by chronic morphine treatment: NMR studies in thalamus and somatosensory cortex of rats. Neurochem Res 31:1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci U S A 108:15037–15042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31271098, 31571108), the National Key Basic Research Program of China (2015CB553501), and Beijing Natural Science Foundation (5162023).

Author information

Authors and Affiliations

Authors

Contributions

Chengji Piao, Tiane Liu, Lian Ma, Xuekun Ding, and Xing Chen performed experiments. Chengji Piao, Tiane Liu, and Xingyue Wang analyzed data. Ying Duan assisted experiments. Nan Sui and Jing Liang designed the study. Chenji Piao and Jing Liang wrote the manuscript, and Jing Liang finalized the manuscript. All authors contributed to and have approved the final manuscript and agreed to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Nan Sui or Jing Liang.

Ethics declarations

The experimental procedures were approved by the Institutional Review Board of the Institute of Psychology, Chinese Academy of Sciences and were in compliance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piao, C., Liu, T., Ma, L. et al. Alterations in brain activation in response to prolonged morphine withdrawal-induced behavioral inflexibility in rats. Psychopharmacology 234, 2941–2953 (2017). https://doi.org/10.1007/s00213-017-4689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4689-3

Keywords

Navigation