Skip to main content

Advertisement

Log in

Prenatal nicotine exposure decreases the release of dopamine in the medial frontal cortex and induces atomoxetine-responsive neurobehavioral deficits in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Increased risk of attention-deficit/hyperactivity disorder (AD/HD) is partly associated with the early developmental exposure to nicotine in tobacco smoke. Emerging reports link tobacco smoke exposure or prenatal nicotine exposure (PNE) with AD/HD-like behaviors in rodent models. We have previously reported that PNE induces cognitive behavioral deficits in offspring and decreases the contents of dopamine (DA) and its turnover in the prefrontal cortex (PFC) of offspring It is well known that the dysfunction of DAergic system in the brain is one of the core factors in the pathophysiology of AD/HD. Therefore, we examined whether the effects of PNE on the DAergic system underlie the AD/HD-related behavioral changes in mouse offspring. PNE reduced the release of DA in the medial PFC (mPFC) in mouse offspring. PNE reduced the number of tyrosine hydroxylase (TH)-positive varicosities in the mPFC and in the core as well as the shell of nucleus accumbens, but not in the striatum. PNE also induced behavioral deficits in cliff avoidance, object-based attention, and sensorimotor gating in offspring. These behavioral deficits were attenuated by acute treatment with atomoxetine (3 mg/kg, s.c.) or partially attenuated by acute treatment with MPH (1 mg/kg, s.c.). Taken together, our findings support the notion that PNE induces neurobehavioral abnormalities in mouse offspring by disrupting the DAergic system and improve our understanding about the incidence of AD/HD in children whose mothers were exposed to nicotine during their pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott LC, Winzer-Serhan UH (2012) Smoking during pregnancy: lessons learned from epidemiological studies and experimental studies using animal models. Crit Rev Toxicol 42:279–303

    Article  CAS  PubMed  Google Scholar 

  • Agster KL, Mejias-Aponte CA, Clark BD, Waterhouse BD (2013) Evidence for a regional specificity in the density and distribution of noradrenergic varicosities in rat cortex. J Comp Neurol 521:2195–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkam T, Hiramatsu M, Mamiya T, Aoyama Y, Nitta A, Yamada K, Kim HC, Nabeshima T (2011) Evaluation of object-based attention in mice. Behav Brain Res 220:185–193

    Article  PubMed  Google Scholar 

  • Alkam T, Kim HC, Hiramatsu M, Mamiya T, Aoyama Y, Nitta A, Yamada K, Nabeshima T (2013a) Evaluation of emotional behaviors in young offspring of C57BL/6J mice after gestational and/or perinatal exposure to nicotine in six different time-windows. Behav Brain Res 239:80–89

    Article  CAS  PubMed  Google Scholar 

  • Alkam T, Kim HC, Mamiya T, Yamada K, Hiramatsu M, Nabeshima T (2013b) Evaluation of cognitive behaviors in young offspring of C57BL/6J mice after gestational nicotine exposure during different time-windows. Psychopharmacology 230:451–463

    Article  CAS  PubMed  Google Scholar 

  • Alzoubi KH, Khabour OF, Alharahshah EA, Alhashimi FH, Shihadeh A, Eissenberg T (2015) The effect of waterpipe tobacco smoke exposure on learning and memory functions in the rat model. Journal of molecular neuroscience : MN 57:249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amos-Kroohs RM, Williams MT, Braun AA, Graham DL, Webb CL, Birtles TS, Greene RM, Vorhees CV, Pisano MM (2013) Neurobehavioral phenotype of C57BL/6J mice prenatally and neonatally exposed to cigarette smoke. Neurotoxicol Teratol 35:34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anzalone A, Lizardi-Ortiz JE, Ramos M, De Mei C, Hopf FW, Iaccarino C, Halbout B, Jacobsen J, Kinoshita C, Welter M, Caron MG, Bonci A, Sulzer D, Borrelli E (2012) Dual control of dopamine synthesis and release by presynaptic and postsynaptic dopamine D2 receptors. J Neurosci Off J Soc Neurosci 32:9023–9034

    Article  CAS  Google Scholar 

  • Aoyama Y, Toriumi K, Mouri A, Hattori T, Ueda E, Shimato A, Sakakibara N, Soh Y, Mamiya T, Nagai T, Kim HC, Hiramatsu M, Nabeshima T, Yamada K (2016) Prenatal nicotine exposure impairs the proliferation of neuronal progenitors, leading to fewer glutamatergic neurons in the medial prefrontal cortex. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 41:578–589

    Article  CAS  Google Scholar 

  • Aron AR, Dowson JH, Sahakian BJ, Robbins TW (2003) Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 54:1465–1468

    Article  CAS  PubMed  Google Scholar 

  • Bari A, Robbins TW (2011) Animal models of ADHD. Curr Top Behav Neurosci 7:149–185

    Article  CAS  PubMed  Google Scholar 

  • Bari A, Robbins TW (2013a) Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol 108:44–79

    Article  PubMed  Google Scholar 

  • Bari A, Robbins TW (2013b) Noradrenergic versus dopaminergic modulation of impulsivity, attention and monitoring behaviour in rats performing the stop-signal task: possible relevance to ADHD. Psychopharmacology 230:89–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari A, Dalley JW, Robbins TW (2008) The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat Protoc 3:759–767

    Article  CAS  PubMed  Google Scholar 

  • Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology 205:273–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari A, Mar AC, Theobald DE, Elands SA, Oganya KC, Eagle DM, Robbins TW (2011) Prefrontal and monoaminergic contributions to stop-signal task performance in rats. J Neurosci Off J Soc Neurosci 31:9254–9263

    Article  CAS  Google Scholar 

  • Bello EP, Casas-Cordero R, Galinanes GL, Casey E, Belluscio MA, Rodriguez V, Noain D, Murer MG, Rubinstein M (2016) Inducible ablation of dopamine D2 receptors in adult mice impairs locomotion, motor skill learning and leads to severe parkinsonism. Mole Psychiatry. doi:10.1038/mp.2016.105

  • Benes FM, Vincent SL, Molloy R, Khan Y (1996) Increased interaction of dopamine-immunoreactive varicosities with GABA neurons of rat medial prefrontal cortex occurs during the postweanling period. Synapse 23:237–245

    Article  CAS  PubMed  Google Scholar 

  • Berner J, Ringstedt T, Brodin E, Hokfelt T, Lagercrantz H, Wickstrom R (2008) Prenatal exposure to nicotine affects substance p and preprotachykinin-A mRNA levels in newborn rat. Pediatr Res 64:621–624

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, Schmeichel B, Hamilton C, Spencer RC (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 60:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    Article  PubMed  CAS  Google Scholar 

  • Blood-Siegfried J, Rende EK (2010) The long-term effects of prenatal nicotine exposure on neurologic development. J Midwifery Womens Health 55:143–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Britton AF, Vann RE, Robinson SE (2007) Perinatal nicotine exposure eliminates peak in nicotinic acetylcholine receptor response in adolescent rats. J Pharmacol Exp Ther 320:871–876

    Article  CAS  PubMed  Google Scholar 

  • Bryden DW, Burton AC, Barnett BR, Cohen VJ, Hearn TN, Jones EA, Kariyil RJ, Kunin A, Kwak SI, Lee J, Lubinski BL, Rao GK, Zhan A, Roesch MR (2016) Prenatal Nicotine Exposure Impairs Executive Control Signals in Medial Prefrontal Cortex. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 41:716–725

    Article  CAS  Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 27:699–711

    Article  CAS  Google Scholar 

  • Chamberlain SR, Robbins TW (2013) Noradrenergic modulation of cognition: therapeutic implications. J Psychopharmacol 27:694–718

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SR, Del Campo N, Dowson J, Muller U, Clark L, Robbins TW, Sahakian BJ (2007a) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain SR, Robbins TW, Sahakian BJ (2007b) The neurobiology of attention-deficit/hyperactivity disorder. Biol Psychiatry 61:1317–1319

    Article  PubMed  Google Scholar 

  • Chen J, Song J, Yuan P, Tian Q, Ji Y, Ren-Patterson R, Liu G, Sei Y, Weinberger DR (2011) Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: implications for drug development. J Biol Chem 286:34752–34760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clifford A, Lang L, Chen R (2012) Effects of maternal cigarette smoking during pregnancy on cognitive parameters of children and young adults: a literature review. Neurotoxicol Teratol 34:560–570

    Article  CAS  PubMed  Google Scholar 

  • Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW (2011) The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry 69:e145–e157

    Article  CAS  PubMed  Google Scholar 

  • Dempsey DA, Benowitz NL (2001) Risks and benefits of nicotine to aid smoking cessation in pregnancy. Drug Saf 24:277–322

    Article  CAS  PubMed  Google Scholar 

  • Descarries L, Lemay B, Doucet G, Berger B (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21:807–824

    Article  CAS  PubMed  Google Scholar 

  • Devoto P, Flore G, Pani L, Gessa GL (2001) Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex. Mol Psychiatry 6:657–664

    Article  CAS  PubMed  Google Scholar 

  • Devoto P, Flore G, Longu G, Pira L, Gessa GL (2003) Origin of extracellular dopamine from dopamine and noradrenaline neurons in the medial prefrontal and occipital cortex. Synapse 50:200–205

    Article  CAS  PubMed  Google Scholar 

  • Devoto P, Flore G, Saba P, Fa M, Gessa GL (2005a) Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus. BMC Neurosci 6:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devoto P, Flore G, Saba P, Fa M, Gessa GL (2005b) Stimulation of the locus coeruleus elicits noradrenaline and dopamine release in the medial prefrontal and parietal cortex. J Neurochem 92:368–374

    Article  CAS  PubMed  Google Scholar 

  • Ding YS, Naganawa M, Gallezot JD, Nabulsi N, Lin SF, Ropchan J, Weinzimmer D, McCarthy TJ, Carson RE, Huang Y, Laruelle M (2014) Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD. NeuroImage 86:164–171

    Article  CAS  PubMed  Google Scholar 

  • Ernst M, Moolchan ET, Robinson ML (2001) Behavioral and neural consequences of prenatal exposure to nicotine. J Am Acad Child Adolesc Psychiatry 40:630–641

    Article  CAS  PubMed  Google Scholar 

  • Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76:1057–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadda F, Gessa GL, Marcou M, Mosca E, Rossetti Z (1984) Evidence for dopamine autoreceptors in mesocortical dopamine neurons. Brain Res 293:67–72

    Article  CAS  PubMed  Google Scholar 

  • Faraone SV, Sergeant J, Gillberg C, Biederman J (2003) The worldwide prevalence of ADHD: is it an American condition? World psychiatry: official journal of the World Psychiatric Association 2:104–113

    Google Scholar 

  • Fernando AB, Economidou D, Theobald DE, Zou MF, Newman AH, Spoelder M, Caprioli D, Moreno M, Hipolito L, Aspinall AT, Robbins TW, Dalley JW (2012) Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists. Psychopharmacology 219:341–352

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick C, Barnett TA, Pagani LS (2014) Parental bad habits breed bad behaviors in youth: exposure to gestational smoke and child impulsivity. International journal of psychophysiology: official journal of the International Organization of Psychophysiology 93:17–21

    Article  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, compact, 3rd edn. Academic Press, San Diego

  • Garcia-Rill E, Buchanan R, McKeon K, Skinner RD, Wallace T (2007) Smoking during pregnancy: postnatal effects on arousal and attentional brain systems. Neurotoxicology 28:915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garris PA, Collins LB, Jones SR, Wightman RM (1993) Evoked extracellular dopamine in vivo in the medial prefrontal cortex. J Neurochem 61:637–647

    Article  CAS  PubMed  Google Scholar 

  • German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE (2015) Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev 67:1005–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold AB, Keller AB, Perry DC (2009) Prenatal exposure of rats to nicotine causes persistent alterations of nicotinic cholinergic receptors. Brain Res 1250:88–100

    Article  CAS  PubMed  Google Scholar 

  • Hall BJ, Cauley M, Burke DA, Kiany A, Slotkin TA, Levin ED (2016) Cognitive and behavioral impairments evoked by low-level exposure to tobacco smoke components: comparison with nicotine alone. Toxicological sciences: an official journal of the Society of Toxicology 151:236–244

    Article  CAS  Google Scholar 

  • Halperin JM, Newcorn JH, Koda VH, Pick L, McKay KE, Knott P (1997) Noradrenergic mechanisms in ADHD children with and without reading disabilities: a replication and extension. J Am Acad Child Adolesc Psychiatry 36:1688–1697

    Article  CAS  PubMed  Google Scholar 

  • Hamburg H, Trossbach SV, Bader V, Chwiesko C, Kipar A, Sauvage M, Crum WR, Vernon AC, Bidmon HJ, Korth C (2016) Simultaneous effects on parvalbumin-positive interneuron and dopaminergic system development in a transgenic rat model for sporadic schizophrenia. Scientific reports 6:34946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamosh M, Simon MR, Hamosh P (1979) Effect of nicotine on the development of fetal and suckling rats. Biol Neonate 35:290–297

    Article  CAS  PubMed  Google Scholar 

  • Heath CJ, Picciotto MR (2009) Nicotine-induced plasticity during development: modulation of the cholinergic system and long-term consequences for circuits involved in attention and sensory processing. Neuropharmacology 56(Suppl 1):254–262

    Article  CAS  PubMed  Google Scholar 

  • Huang LZ, Liu X, Griffith WH, Winzer-Serhan UH (2007) Chronic neonatal nicotine increases anxiety but does not impair cognition in adult rats. Behav Neurosci 121:1342–1352

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow JR, Fang Y, Gerhardt GA, Grandy DK, Low MJ (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci Off J Soc Neurosci 18:3470–3479

    CAS  Google Scholar 

  • Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 114:259–270

    CAS  PubMed  Google Scholar 

  • Lacroix L, Broersen LM, Feldon J, Weiner I (2000) Effects of local infusions of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine induced activity. Behav Brain Res 107:111–121

    Article  CAS  PubMed  Google Scholar 

  • Linnet KM, Dalsgaard S, Obel C, Wisborg K, Henriksen TB, Rodriguez A, Kotimaa A, Moilanen I, Thomsen PH, Olsen J, Jarvelin MR (2003) Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am J Psychiatry 160:1028–1040

    Article  PubMed  Google Scholar 

  • Lohr KM, Bernstein AI, Stout KA, Dunn AR, Lazo CR, Alter SP, Wang M, Li Y, Fan X, Hess EJ, Yi H, Vecchio LM, Goldstein DS, Guillot TS, Salahpour A, Miller GW (2014) Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc Natl Acad Sci U S A 111:9977–9982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamiya T, Morikawa K, Kise M (2014) Pregerminated brown rice enhanced NMDA receptor/CaMKIIα signaling in the frontal cortex of mice Journal of Rice Research:2

  • Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C (2011) The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. J Neurosci Off J Soc Neurosci 31:8381–8394

    Article  CAS  Google Scholar 

  • Matsuoka Y, Furuyashiki T, Yamada K, Nagai T, Bito H, Tanaka Y, Kitaoka S, Ushikubi F, Nabeshima T, Narumiya S (2005) Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proc Natl Acad Sci U S A 102:16066–16071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacology 190:269–319

    Article  CAS  PubMed  Google Scholar 

  • Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci Off J Soc Neurosci 20:RC65

    CAS  Google Scholar 

  • Mick E, Biederman J, Faraone SV, Sayer J, Kleinman S (2002) Case-control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug use during pregnancy. J Am Acad Child Adolesc Psychiatry 41:378–385

    Article  PubMed  Google Scholar 

  • Milberger S, Biederman J, Faraone SV, Chen L, Jones J (1996) Is maternal smoking during pregnancy a risk factor for attention deficit hyperactivity disorder in children? Am J Psychiatry 153:1138–1142

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Noda Y, Mouri A, Kobayashi K, Mishina M, Nabeshima T, Yamada K (2013) Role of convergent activation of glutamatergic and dopaminergic systems in the nucleus accumbens in the development of methamphetamine psychosis and dependence. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum 16:1341–1350

    Article  CAS  Google Scholar 

  • Mouri A, Hoshino Y, Narusawa S, Ikegami K, Mizoguchi H, Murata Y, Yoshimura T, Nabeshima T (2014) Thyrotoropin receptor knockout changes monoaminergic neuronal system and produces methylphenidate-sensitive emotional and cognitive dysfunction. Psychoneuroendocrinology 48:147–161

    Article  CAS  PubMed  Google Scholar 

  • Muhammad A, Mychasiuk R, Nakahashi A, Hossain SR, Gibb R, Kolb B (2012) Prenatal nicotine exposure alters neuroanatomical organization of the developing brain. Synapse 66:950–954

    Article  CAS  PubMed  Google Scholar 

  • Muneoka K, Ogawa T, Kamei K, Muraoka S, Tomiyoshi R, Mimura Y, Kato H, Suzuki MR, Takigawa M (1997) Prenatal nicotine exposure affects the development of the central serotonergic system as well as the dopaminergic system in rat offspring: involvement of route of drug administrations. Brain Res Dev Brain Res 102:117–126

    Article  CAS  PubMed  Google Scholar 

  • Muneoka K, Nakatsu T, Fuji J, Ogawa T, Takigawa M (1999) Prenatal administration of nicotine results in dopaminergic alterations in the neocortex. Neurotoxicol Teratol 21:603–609

    Article  CAS  PubMed  Google Scholar 

  • Muneoka K, Ogawa T, Kamei K, Mimura Y, Kato H, Takigawa M (2001) Nicotine exposure during pregnancy is a factor which influences serotonin transporter density in the rat brain. Eur J Pharmacol 411:279–282

    Article  CAS  PubMed  Google Scholar 

  • Mychasiuk R, Muhammad A, Gibb R, Kolb B (2013) Long-term alterations to dendritic morphology and spine density associated with prenatal exposure to nicotine. Brain Res 1499:53–60

    Article  CAS  PubMed  Google Scholar 

  • Naeff B, Schlumpf M, Lichtensteiger W (1992) Pre- and postnatal development of high-affinity [3H]nicotine binding sites in rat brain regions: an autoradiographic study. Brain Res Dev Brain Res 68:163–174

    Article  CAS  PubMed  Google Scholar 

  • Neal RE, Chen J, Jagadapillai R, Jang H, Abomoelak B, Brock G, Greene RM, Pisano MM (2014) Developmental cigarette smoke exposure: hippocampus proteome and metabolome profiles in low birth weight pups. Toxicology 317:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuman RJ, Lobos E, Reich W, Henderson CA, Sun LW, Todd RD (2007) Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol Psychiatry 61:1320–1328

    Article  CAS  PubMed  Google Scholar 

  • Newcorn JH, Kratochvil CJ, Allen AJ, Casat CD, Ruff DD, Moore RJ, Michelson D, Atomoxetine/Methylphenidate Comparative Study G (2008) Atomoxetine and osmotically released methylphenidate for the treatment of attention deficit hyperactivity disorder: acute comparison and differential response. Am J Psychiatry 165:721–730

    Article  PubMed  Google Scholar 

  • Nyman ES, Ogdie MN, Loukola A, Varilo T, Taanila A, Hurtig T, Moilanen IK, Loo SK, McGough JJ, Jarvelin MR, Smalley SL, Nelson SF, Peltonen L (2007) ADHD candidate gene study in a population-based birth cohort: association with DBH and DRD2. J Am Acad Child Adolesc Psychiatry 46:1614–1621

    Article  PubMed  Google Scholar 

  • O’Hara BF, Macdonald E, Clegg D, Wiler SW, Andretic R, Cao VH, Miller JD, Heller HC, Kilduff TS (1999) Developmental changes in nicotinic receptor mRNAs and responses to nicotine in the suprachiasmatic nucleus and other brain regions. Brain Res Mol Brain Res 66:71–82

    Article  PubMed  Google Scholar 

  • Oliff HS, Gallardo KA (1999) The effect of nicotine on developing brain catecholamine systems. Front Biosci 4:D883–D897

    Article  CAS  PubMed  Google Scholar 

  • Omelchenko N, Roy P, Balcita-Pedicino JJ, Poloyac S, Sesack SR (2016) Impact of prenatal nicotine on the structure of midbrain dopamine regions in the rat. Brain Struct Funct 221:1939–1953

    Article  CAS  PubMed  Google Scholar 

  • Pauly JR, Slotkin TA (2008) Maternal tobacco smoking, nicotine replacement and neurobehavioural development. Acta Paediatr 97:1331–1337

    Article  PubMed  Google Scholar 

  • Pauly JR, Sparks JA, Hauser KF, Pauly TH (2004) In utero nicotine exposure causes persistent, gender-dependant changes in locomotor activity and sensitivity to nicotine in C57Bl/6 mice. International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 22:329–337

    Article  CAS  Google Scholar 

  • Paz R, Barsness B, Martenson T, Tanner D, Allan AM (2007) Behavioral teratogenicity induced by nonforced maternal nicotine consumption. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 32:693–699

    Article  CAS  Google Scholar 

  • Phillips AG, Ahn S, Floresco SB (2004) Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci Off J Soc Neurosci 24:547–553

    Article  CAS  Google Scholar 

  • Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948

    Article  PubMed  Google Scholar 

  • Pothos EN, Przedborski S, Davila V, Schmitz Y, Sulzer D (1998) D2-Like dopamine autoreceptor activation reduces quantal size in PC12 cells. J Neurosci Off J Soc Neurosci 18:5575–5585

    CAS  Google Scholar 

  • Prince J (2008) Catecholamine dysfunction in attention-deficit/hyperactivity disorder: an update. J Clin Psychopharmacol 28:S39–S45

    Article  CAS  PubMed  Google Scholar 

  • Ramos BP, Arnsten AF (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113:523–536

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163:362–380

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW (2007) Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond Ser B Biol Sci 362:917–932

    Article  CAS  Google Scholar 

  • Santiago SE, Huffman KJ (2012) Postnatal effects of prenatal nicotine exposure on body weight, brain size and cortical connectivity in mice. Neurosci Res 73:282–291

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Bizarro L, Asherson PJ, Stolerman IP (2010) Gestational exposure to nicotine in drinking water: teratogenic effects and methodological issues. Behav Pharmacol 21:206–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider T, Ilott N, Brolese G, Bizarro L, Asherson PJ, Stolerman IP (2011) Prenatal exposure to nicotine impairs performance of the 5-choice serial reaction time task in adult rats. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 36:1114–1125

    Article  CAS  Google Scholar 

  • Schneider T, Bizarro L, Asherson PJ, Stolerman IP (2012) Hyperactivity, increased nicotine consumption and impaired performance in the five-choice serial reaction time task in adolescent rats prenatally exposed to nicotine. Psychopharmacology 223:401–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    CAS  PubMed  Google Scholar 

  • Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci Off J Soc Neurosci 13:900–913

    CAS  Google Scholar 

  • Seguela P, Watkins KC, Descarries L (1988) Ultrastructural features of dopamine axon terminals in the anteromedial and the suprarhinal cortex of adult rat. Brain Res 442:11–22

    Article  CAS  PubMed  Google Scholar 

  • Seguela P, Watkins KC, Geffard M, Descarries L (1990) Noradrenaline axon terminals in adult rat neocortex: an immunocytochemical analysis in serial thin sections. Neuroscience 35:249–264

    Article  CAS  PubMed  Google Scholar 

  • Seidler FJ, Levin ED, Lappi SE, Slotkin TA (1992) Fetal nicotine exposure ablates the ability of postnatal nicotine challenge to release norepinephrine from rat brain regions. Brain Res Dev Brain Res 69:288–291

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI (1998) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci Off J Soc Neurosci 18:2697–2708

    CAS  Google Scholar 

  • Shaywitz BA, Cohen DJ, Bowers MB Jr (1977) CSF monoamine metabolites in children with minimal brain dysfunction: evidence for alteration of brain dopamine. A preliminary report The Journal of pediatrics 90:67–71

    CAS  PubMed  Google Scholar 

  • Shekim WO, Javaid J, Davis JM, Bylund DB (1983) Urinary MHPG and HVA excretion in boys with attention deficit disorder and hyperactivity treated with d-amphetamine. Biol Psychiatry 18:707–714

    CAS  PubMed  Google Scholar 

  • Shekim WO, Sinclair E, Glaser R, Horwitz E, Javaid J, Bylund DB (1987) Norepinephrine and dopamine metabolites and educational variables in boys with attention deficit disorder and hyperactivity. J Child Neurol 2:50–56

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA (1998) Fetal nicotine or cocaine exposure: which one is worse? J Pharmacol Exp Ther 285:931–945

    CAS  PubMed  Google Scholar 

  • Slotkin TA, Seidler FJ, Qiao D, Aldridge JE, Tate CA, Cousins MM, Proskocil BJ, Sekhon HS, Clark JA, Lupo SL, Spindel ER (2005) Effects of prenatal nicotine exposure on primate brain development and attempted amelioration with supplemental choline or vitamin C: neurotransmitter receptors, cell signaling and cell development biomarkers in fetal brain regions of rhesus monkeys. Neuropsychopharmacology 30:129–144

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA, MacKillop EA, Rudder CL, Ryde IT, Tate CA, Seidler FJ (2007) Permanent, sex-selective effects of prenatal or adolescent nicotine exposure, separately or sequentially, in rat brain regions: indices of cholinergic and serotonergic synaptic function, cell signaling, and neural cell number and size at 6 months of age. Neuropsychopharmacology 32:1082–1097

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Yuan F, Shen X, Xiong G, Wu J (2014) Role of COMT in ADHD: a systematic meta-analysis. Mol Neurobiol 49:251–261

    Article  CAS  PubMed  Google Scholar 

  • Swanson JM, Wigal T, Lakes K (2009) DSM-V and the future diagnosis of attention-deficit/hyperactivity disorder. Current psychiatry reports 11:399–406

    Article  PubMed  PubMed Central  Google Scholar 

  • Thapar A, Fowler T, Rice F, Scourfield J, van den Bree M, Thomas H, Harold G, Hay D (2003) Maternal smoking during pregnancy and attention deficit hyperactivity disorder symptoms in offspring. Am J Psychiatry 160:1985–1989

    Article  PubMed  Google Scholar 

  • Tizabi Y, Russell LT, Nespor SM, Perry DC, Grunberg NE (2000) Prenatal nicotine exposure: effects on locomotor activity and central [125I]alpha-BT binding in rats. Pharmacol Biochem Behav 66:495–500

    Article  CAS  PubMed  Google Scholar 

  • Tonges L, Frank T, Tatenhorst L, Saal KA, Koch JC, Szego EM, Bahr M, Weishaupt JH, Lingor P (2012) Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain J Neurol 135:3355–3370

    Article  Google Scholar 

  • Toren P, Rehavi M, Luski A, Roz N, Laor N, Lask M, Weizman A (2005) Decreased platelet vesicular monoamine transporter density in children and adolescents with attention deficit/hyperactivity disorder. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 15:159–162

    Article  CAS  Google Scholar 

  • Toriumi K, Mamiya T, Song Z, Honjo T, Watanabe H, Tanaka J, Kondo M, Mouri A, Kim HC, Nitta A, Fukushima T, Nabeshima T (2015) Deletion of SHATI/NAT8L decreases the N-acetylaspartate content in the brain and induces behavioral deficits, which can be ameliorated by administering N-acetylaspartate. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 25:2108–2117

    Article  CAS  Google Scholar 

  • Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203

    Article  CAS  PubMed  Google Scholar 

  • Vaglenova J, Birru S, Pandiella NM, Breese CR (2004) An assessment of the long-term developmental and behavioral teratogenicity of prenatal nicotine exposure. Behav Brain Res 150:159–170

    Article  CAS  PubMed  Google Scholar 

  • Vaglenova J, Parameshwaran K, Suppiramaniam V, Breese CR, Pandiella N, Birru S (2008) Long-lasting teratogenic effects of nicotine on cognition: gender specificity and role of AMPA receptor function. Neurobiol Learn Mem 90:527–536

    Article  CAS  PubMed  Google Scholar 

  • Verwey M, Grant A, Meti N, Adye-White L, Torres-Berrio A, Rioux V, Levesque M, Charron F, Flores C (2016) Mesocortical Dopamine Phenotypes in Mice Lacking the Sonic Hedgehog Receptor Cdon. eNeuro 3

  • Volkow ND, Wang GJ, Newcorn JH, Kollins SH, Wigal TL, Telang F, Fowler JS, Goldstein RZ, Klein N, Logan J, Wong C, Swanson JM (2011) Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry 16:1147–1154

    Article  CAS  PubMed  Google Scholar 

  • Wayment HK, Schenk JO, Sorg BA (2001) Characterization of extracellular dopamine clearance in the medial prefrontal cortex: role of monoamine uptake and monoamine oxidase inhibition. J Neurosci Off J Soc Neurosci 21:35–44

    CAS  Google Scholar 

  • Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26:379–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Kish VL, Benders KM, Wu ZX (2016) Prenatal and early postnatal exposure to cigarette smoke decreases BDNF/TrkB signaling and increases abnormal behaviors later in life. Int J Neuropsychopharmacol. doi:10.1093/ijnp/pyv117

  • Yochum C, Doherty-Lyon S, Hoffman C, Hossain MM, Zelikoff JT, Richardson JR (2014) Prenatal cigarette smoke exposure causes hyperactivity and aggressive behavior: role of altered catecholamines and BDNF. Exp Neurol 254:145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Dragomir A, Akay YM, Akay M (2014) Nicotine exposure increases the complexity of dopamine neurons in the parainterfascicular nucleus (PIF) sub-region of VTA. Journal of neuroengineering and rehabilitation 11:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Rosenthal DG, Sherman S, Zelikoff J, Gordon T, Weitzman M (2014) Physical, behavioral, and cognitive effects of prenatal tobacco and postnatal secondhand smoke exposure. Current problems in pediatric and adolescent health care 44:219–241

    Article  PubMed  Google Scholar 

  • Zhu J, Zhang X, Xu Y, Spencer TJ, Biederman J, Bhide PG (2012) Prenatal nicotine exposure mouse model showing hyperactivity, reduced cingulate cortex volume, reduced dopamine turnover, and responsiveness to oral methylphenidate treatment. J Neurosci Off J Soc Neurosci 32:9410–9418

    Article  CAS  Google Scholar 

  • Zhu J, Lee KP, Spencer TJ, Biederman J, Bhide PG (2014) Transgenerational transmission of hyperactivity in a mouse model of ADHD. J Neurosci Off J Soc Neurosci 34:2768–2773

    Article  CAS  Google Scholar 

  • Zhu Y, Yang D, Ji W, Huang T, Xue L, Jiang X, Chen L, Wang F (2016) The relationship between neurocircuitry dysfunctions and attention deficit hyperactivity disorder: a review. Biomed Res Int 2016:3821579

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Grants-in-Aids for Scientific Research (26460240 and 15 K08218, 16K10195) from the Japan Society for the Promotion of Science (JSPS); the “Integrated Research on Neuropsychiatric Disorders” and “Bioinformatics for Brain Sciences” carried out under the SRPBS from MEXT; the Research on Regulatory Science of Pharmaceuticals and Medical Devices from the Ministry of Health and Labour Sciences from the Ministry of Health, Labour and Welfare, Japan (MHLW); a grant from the joint research project under the Japan-Korea basic scientific cooperation program (JSPS); and the Research Grants from Takeda Science Foundation, the Nakatomi Foundation, and the SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshitaka Nabeshima.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Tursun Alkam and Takayoshi Mamiya contribute equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkam, T., Mamiya, T., Kimura, N. et al. Prenatal nicotine exposure decreases the release of dopamine in the medial frontal cortex and induces atomoxetine-responsive neurobehavioral deficits in mice. Psychopharmacology 234, 1853–1869 (2017). https://doi.org/10.1007/s00213-017-4591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4591-z

Keywords

Navigation