Skip to main content

Advertisement

Log in

Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Many studies have indicated that a history of depression increases the risk of developing Alzheimer’s disease (AD); however, the potential pathogenestic mechanism by which depression functions as a high risk factor for AD remains unknown. Recently, a “cerebral lymphatic system” referred to as “glymphatic system” has been demonstrated to be responsible for neuronal extracellular waste protein clearance via a paravascular pathway. However, the function of glymphatic pathway has not been determined in depressive disorders.

Methods

The present study used an animal model of chronic unpredictable mild stress (CUMS) to determine the function of glymphatic pathway by using fluorescence tracers. Immunohistochemistry was used to assess the accumulation of endogenous mouse and exogenous human amyloid beta 42 (Aβ42) in CUMS-treated mice with or without treatment with antidepressant fluoxetine.

Findings

Glymphatic pathway circulation was impaired in mice treated with CUMS; moreover, glymphatic pathway dysfunction suppressed Aβ42 metabolism, because the accumulation of endogenous and exogenous Aβ42 was increased in the brains of the CUMS-treated mice. However, treatment with fluoxetine reversed these destructive effects of CUMS on glymphatic system. In anhedonic mice, the expression of the water channel aquaporin 4 (AQP4), a factor in glymphatic pathway dysfunction, was down-regulated in cortex and hippocampus.

Conclusion

The dysfunction of glymphatic system suggested why a history of depression may be a strong risk factor for AD in anhedonic mice. We hope our study will contribute to an understanding of the risk mechanism of depressive disorder in the development of AD and the mechanisms of antidepressant therapies in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Busciglio J, Gabuzda DH, Matsudaira P, Yanker BA (1993) Generation of β-amyloid in the secretory pathway in neuronal and non-neuronal cells. Proc Natl Acad Sci U S A 90:2092–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devanand DP, Sano M, Tang MX, Taylor S, Gurland BJ, Wilder D et al (1996) Depressed mood and the incidence of Alzheimer’s disease in the elderly living in the community. Arch Gen Psychiatry 53:175–182

    Article  CAS  PubMed  Google Scholar 

  • Diniz BS, Teixeira AL, Machado-Vieira R, Talib LL, Radanovic M, Gattaz WF et al (2014) Reduced cerebrospinal fluid levels of brain-derived neurotrophic factor is associated with cognitive impairment in late-life major depression. J Gerontol B Psychol Sci Soc Sci 69:845–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong L, Li B, Verkhratsky A, Peng L (2015) Cell type-specific in vivo expression of genes encoding signalling molecules in the brain in response to chronic mild stress and chronic treatment with fluoxetine. Psychopharmacology 232:2827–2835

    Article  CAS  PubMed  Google Scholar 

  • Fisk L, Nalivaeva NN, Boyle JP, Peers CS, Turner AJ (2007) Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurones and astrocytes. Neurochem Res 32:1741–1748

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Li B, Hertz L, Peng L (2012) Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int 61:187–194

    Article  CAS  PubMed  Google Scholar 

  • Galimberti D, Ghezzi L, Scarpini E (2013) Immunotherapy against amyloid pathology in Alzheimer’s disease. J Neurol Sci 333:50–54

    Article  CAS  PubMed  Google Scholar 

  • Geerlings MI, den Heijer T, Koudstaal PJ, Hofman A, Breteler MM (2008) History of depression, depressive symptoms, and medial temporal lobe atrophy and the risk of Alzheimer disease. Neurology 70:1258–1264

    Article  CAS  PubMed  Google Scholar 

  • Gouras GK, Willen K, Faideau M (2014) The inside-out amyloid hypothesis and synapse pathology in Alzheimer’s disease. Neurodegener Dis 13:142–146

    Article  CAS  PubMed  Google Scholar 

  • Green RC, Cupples LA, Kurz A, Auerbach S, Go R, Sadovnick D et al (2003) Depression as a risk factor for Alzheimer disease: the MIRAGE study. Arch Neurol 60:753–759

    Article  PubMed  Google Scholar 

  • Hashimoto M, Bogdanovic N, Volkmann I, Aoki M, Winblad B, Tjernberg LO (2010) Analysis of microdissected human neurons by a sensitive ELISA reveals a correlation between elevated intracellular concentrations of Abeta42 and Alzheimer’s disease neuropathology. Acta Neuropathol 119:543–554

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JA, Carare RO (2012) Disruption of arterial perivascular drainage of amyloid-beta from the brains of mice expressing the human APOE epsilon4 allele. PLoS One 7 e41636

  • Hertz L, Song D, Li B, Du T, Xu J, Gu L et al (2014) Signal transduction in astrocytes during chronic or acute treatment with drugs (SSRIs, antibipolar drugs, GABA-ergic drugs, and benzodiazepines) ameliorating mood disorders. J Signal Transduct 2014:593934

    Article  PubMed  PubMed Central  Google Scholar 

  • Igarashi H, Huber VJ, Tsujita M, Nakada T (2011) Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. Neurol Sci 32:113–116

    Article  PubMed  Google Scholar 

  • Iliff JJ, Nedergaard M (2013) Is there a cerebral lymphatic system? Stroke 44:S93–S95

    Article  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4 147ra111

  • Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M et al (2013a) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y et al (2013b) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaggi AS, Bhatia N, Kumar N, Singh N, Anand P, Dhawan R (2011) A review on animal models for screening potential anti-stress agents. Neurol Sci 32:993–1005

    Article  PubMed  Google Scholar 

  • Jorm AF (2001) History of depression as a risk factor for dementia: an updated review. Aust NZ J Psychiatry 35:776–781

  • Jorm AF (2011) History of depression as a risk factor for dementia: an updated review. Aust NZ J Psychiatry 35:776–781

    Article  Google Scholar 

  • Kessing LB, Nilsson FM (2003) Increased risk of developing dementia in patients with major affective disorders compared to patients with other medical illnesses. J Affect Disord 73:261–269

    Article  PubMed  Google Scholar 

  • Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT (2008) Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med 5 e45

  • Kokmen E, Beard CM, Chandra V, Offord KP, Schoenberg BS, Ballard DJ (1991) Clinical risk factors for Alzheimer’s disease: a population-based case-control study. Neurology 41:1393–1397

    Article  CAS  PubMed  Google Scholar 

  • Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyrtsos C, Baras J (2015) Modeling the role of the glymphatic pathway and cerebral blood vessel properties in Alzheimer’s disease pathogenesis. PLoS One 10:e0139574

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido T, Selkoe D (1996) Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3:16–32

    Article  Google Scholar 

  • Lan YL, Zhao J, Ma T, Li S (2016) The potential roles of aquaporin 4 in Alzheimer’s disease. Mol Neurobiol 53:5300–5309

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang S, Zhang H, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca(2+) influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 36:322–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dong L, Wang B, Cai L, Jiang N, Peng L (2012a) Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 37:2480–2495

    Article  CAS  PubMed  Google Scholar 

  • Li YK, Wang F, Wang W, Luo Y, Wu PF, Xiao JL et al (2012b) Aquaporin-4 deficiency impairs synaptic plasticity and associative fear memory in the lateral amygdala: involvement of downregulation of glutamate transporter-1 expression. Neuropsychopharmacology 37:1867–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Qi S, Sun G, Yang L, Han J, Zhu Y et al (2016) Leptin suppresses adenosine triphosphate-induced impairment of spinal cord astrocytes. J Neurosci Res 94:924–935

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lundgaard I, Li B, Xie L, Kang H, Sanggaard S, Haswell JD et al (2015) Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun 6:6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina A, Watson SJ, Bunney W Jr, Myers RM, Schatzberg A, Barchas J et al (2016) Evidence for alterations of the glial syncytial function in major depressive disorder. J Psychiatr Res 72:15–21

    Article  PubMed  Google Scholar 

  • Nedergaard M (2013) Neuroscience. Garbage truck of the brain Science 340:1529–1530

    CAS  PubMed  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    CAS  PubMed  Google Scholar 

  • Ostadhadi S, Imran Khan M, Norouzi-Javidan A, Dehpour AR (2016) Antidepressant effect of pramipexole in mice forced swimming test: a cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway. Biomed Pharmacother 81:295–304

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Gu L, Li B, Hertz L (2014) Fluoxetine and all other SSRIs are 5-HT2B agonists-importance for their therapeutic effects. Curr Neuropharmacol 12:365–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Verkhratsky A, Gu L, Li B (2015) Targeting astrocytes in major depression. Expert Rev Neurother 15:1299–1306

    Article  CAS  PubMed  Google Scholar 

  • Pomara N, Bruno D, Sarreal AS, Hernando RT, Nierenberg J, Petkova E et al (2012) Lower CSF amyloid beta peptides and higher F2-isoprostanes in cognitively intact elderly individuals with major depressive disorder. Am J Psychiatry 169:523–530

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues R, Bonda DJ, Perry G, Castellani RJ, Casadesus G, Lee H et al (2010) Oxidative stress and neurodegeneration: an inevitable consequence of aging: implications for therapy. In: Ritsner MS (ed) Brain protection in schizophrenia, mood and cognitive disorders. Springer, Netherlands, pp. 305–325

    Chapter  Google Scholar 

  • Roostaei T, Nazeri A, Felsky D, De Jager PL, Schneider JA, Pollock BG et al. (2016) Alzheimer’s disease neuroimaging initiative (ADNI). Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer’s disease. Mol Psychiatry (in press)

  • Selkoe dJ (1993) Physiological production of the beta-amyloid protein and the mechanism of Alzheimer’s disease. Trends Neurosci 16:403–409

    Article  CAS  PubMed  Google Scholar 

  • Strittmatter WJ (2013) Bathing the brain. J Clin Invest 123:1013–1015

  • Sweet RA, Hamilton RL, Butters MA, Mulsant BH, Pollock BG, Lewis DA et al (2004) Neuropathologic correlates of late-onset major depression. Neuropsychopharmacology 29:2242–2250

    Article  PubMed  Google Scholar 

  • Venkat P, Chopp M, Chen J (2016) New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat Med J 57:223–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang Y, Xu H, Zhu S, Wang H, He J et al (2014) Fluoxetine improves behavioral performance by suppressing the production of soluble β-amyloid in APP/PS1 mice. Curr Alzheimer Res 11:6726–6780

    Google Scholar 

  • Werner FM, Coveñas R (2016) Serotonergic drugs: agonists/antagonists at specific serotonergic subreceptors for the treatment of cognitive, depressant and psychotic symptoms in Alzheimer’s disease. Curr Pharm Des 22:2064–2071

    Article  CAS  PubMed  Google Scholar 

  • Wostyn P, Van Dam D, Audenaert K, Killer HE, De Deyn PP, De Groot V (2015) A new glaucoma hypothesis: a role of glymphatic system dysfunction. Fluids Barriers CNS 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia M, Zhu Y (2013) FOXO3a involvement in the release of TNF-α stimulated by ATP in spinal cord astrocytes. J Mol Neurosci 51:792–804

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R et al (2013a) Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med 11:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Li MX, Luo Y, Chen T, Liu J, Fang P et al (2013b) Chronic ceftriaxone treatment rescues hippocampal memory deficit in AQP4 knockout mice via activation of GLT-1. Neuropharmacology 75:213–222

    Article  CAS  PubMed  Google Scholar 

  • Yazir Y, Utkan T, Gacar N, Aricioglu F (2015) Resveratrol exerts anti-inflammatory and neuroprotective effects to prevent memory deficits in rats exposed to chronic unpredictable mild stress. Physiol Behav 138:297–304

    Article  CAS  PubMed  Google Scholar 

  • Zare N, Khalifeh S, Khodagholi F, Shahamati SZ, Motamedi F, Maghsoudi N (2015) Geldanamycin reduces Aβ-associated anxiety and depression, concurrent with autophagy provocation. J Mol Neurosci 57:317–324

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Song D, Gu L, Ren Y, Verkhratsky A, Peng L (2015) Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson’s disease. Front Cell Neurosci 9:388

    PubMed  PubMed Central  Google Scholar 

  • Zhao X, Liu C, Xu M, Li X, Bi K, Jia Y (2016) Total Lignans of Schisandra chinensis ameliorates Aβ1-42-induced neurodegeneration with cognitive impairment in mice and primary mouse neuronal cells. PLoS One 11:e0152772

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grant no. 81200935 to MX from the National Natural Science Foundation of China, grant no. 20102104120002 to MX from the Doctoral Fund of Education Ministry of China, grant no. L2011135 to MX from the Educational Commission of Liaoning Province of China, grant no. 201602834 to BL from the Natural Science Foundation of Liaoning Province and grant no. [2015]1098 to BL from the Scientific Research Foundation for Overseas Scholars of Education Ministry of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoman Li.

Ethics declarations

Conflict of interest

The authors report there are no biomedical financial interests or potential conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, M., Yang, L., Sun, G. et al. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology 234, 365–379 (2017). https://doi.org/10.1007/s00213-016-4473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4473-9

Keywords

Navigation