Skip to main content
Log in

Responses to drugs of abuse and non-drug rewards in leptin deficient ob/ob mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Although leptin receptors are found in hypothalamic nuclei classically associated with homeostatic feeding mechanisms, they are also present in brain regions known to regulate hedonic-based feeding, natural reward processing, and responses to drugs of abuse. The ob/ob mouse is deficient in leptin signaling, and previous work has found altered mesolimbic dopamine signaling and sensitivity to the locomotor activating effects of amphetamine in these mice.

Objectives

We directly assessed responses to three drugs of abuse and non-drug rewards in the leptin-deficient ob/ob mouse.

Methods

Ob/ob mice were tested in assays of sweet preference, novelty seeking, and drug reward/reinforcement.

Results

In assays of novelty seeking, novel open field activity and operant sensation seeking were reduced in ob/ob mice, although novel object interaction and novel environment preference were comparable to wild types. We also found that ob/ob mice had specific phenotypes in regard to cocaine: conditioned place preference for 2.5 mg/kg was increased, while the locomotor response to 10 mg/kg was reduced, and cocaine self-administration was the same as wild types. Ob/ob mice also acquired self-administration of the potent opioid remifentanil, but breakpoints for the drug were significantly reduced. Finally, we found significant differences in ethanol drinking in ob/ob mice that correlated negatively with body weight and positively with operant sensation seeking.

Conclusions

In conclusion, ob/ob mice displayed task-specific deficits in novelty seeking and dissociable differences in reward/reinforcement associated with cocaine, remifentanil, and ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asakawa A, Inui A, Inui T, Katsuura G, Fujino MA, Kasuga M (2003) Leptin treatment ameliorates anxiety in ob/ob obese mice. J Diabetes Complications 17:105–107

    Article  PubMed  Google Scholar 

  • Baldo BA, Pratt WE, Will MJ, Hanlon EC, Bakshi VP, Cador M (2013) Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior. Neurosci Biobehav Rev 37:1985–1998

    Article  PubMed  PubMed Central  Google Scholar 

  • Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43

    Article  CAS  PubMed  Google Scholar 

  • Bardo MT, Donohew RL, Harrington NG (1996) Psychobiology of novelty seeking and drug seeking behavior. Behav Brain Res 77:23–43

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Grecksch G, Brodemann R, Kraus J, Peters B, Schroeder H, Thiemann W, Loh HH, Hollt V (2000) Morphine self-administration in mu-opioid receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 361:584–589

    Article  CAS  PubMed  Google Scholar 

  • Belin D, Berson N, Balado E, Piazza PV, Deroche-Gamonet V (2011) High-novelty-preference rats are predisposed to compulsive cocaine self-administration. Neuropsychopharmacology 36:569–579

    Article  CAS  PubMed  Google Scholar 

  • Bereiter DA, Jeanrenaud B (1979) Altered neuroanatomical organization in the central nervous system of the genetically obese (ob/ob) mouse. Brain Res 165:249–260

    Article  CAS  PubMed  Google Scholar 

  • Blednov YA, Walker D, Harris RA (2004) Blockade of the leptin-sensitive pathway markedly reduces alcohol consumption in mice. Alcohol Clin Exp Res 28:1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Caron E, Sachot C, Prevot V, Bouret SG (2010) Distribution of leptin-sensitive cells in the postnatal and adult mouse brain. J Comp Neurol 518:459–476

    Article  CAS  PubMed  Google Scholar 

  • Carr KD (2007) Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav 91:459–472

    Article  CAS  PubMed  Google Scholar 

  • Chefer VI, Kieffer BL, Shippenberg TS (2004) Contrasting effects of mu opioid receptor and delta opioid receptor deletion upon the behavioral and neurochemical effects of cocaine. Neuroscience 127:497–503

    Article  CAS  PubMed  Google Scholar 

  • Collins GT, Chen Y, Tschumi C, Rush EL, Mensah A, Koek W, France CP (2015) Effects of consuming a diet high in fat and/or sugar on the locomotor effects of acute and repeated cocaine in male and female C57BL/6J mice. Exp Clin Psychopharmacol 23:228–237

    Article  PubMed  Google Scholar 

  • Davis JF, Choi DL, Schurdak JD, Fitzgerald MF, Clegg DJ, Lipton JW, Figlewicz DP, Benoit SC (2011) Leptin regulates energy balance and motivation through action at distinct neural circuits. Biol Psychiatry 69:668–674

    Article  CAS  PubMed  Google Scholar 

  • Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964:107–115

    Article  CAS  PubMed  Google Scholar 

  • Figlewicz DP, Bennett JL, Naleid AM, Davis C, Grimm JW (2006) Intraventricular insulin and leptin decrease sucrose self-administration in rats. Physiol Behav 89:611–616

    Article  CAS  PubMed  Google Scholar 

  • Finger BC, Dinan TG, Cryan JF (2010) Leptin-deficient mice retain normal appetitive spatial learning yet exhibit marked increases in anxiety-related behaviours. Psychopharmacology (Berl) 210:559–568

    Article  CAS  Google Scholar 

  • Friedman JM (1998) Leptin, leptin receptors, and the control of body weight. Nutr Rev 56:s38–s46, discussion s54-75

    Article  CAS  PubMed  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  CAS  PubMed  Google Scholar 

  • Fulton S, Woodside B, Shizgal P (2000) Modulation of brain reward circuitry by leptin. Science 287:125–128

    Article  CAS  PubMed  Google Scholar 

  • Fulton S, Richard D, Woodside B, Shizgal P (2004) Food restriction and leptin impact brain reward circuitry in lean and obese Zucker rats. Behav Brain Res 155:319–329

    Article  CAS  PubMed  Google Scholar 

  • Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, Maratos-Flier E, Flier JS (2006) Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51:811–822

    Article  CAS  PubMed  Google Scholar 

  • Gjedde A, Kumakura Y, Cumming P, Linnet J, Moller A (2010) Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking. Proc Natl Acad Sci U S A 107:3870–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulding EH, Schenk AK, Juneja P, MacKay AW, Wade JM, Tecott LH (2008) A robust automated system elucidates mouse home cage behavioral structure. Proc Natl Acad Sci U S A 105:20575–20582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grueter BA, Gosnell HB, Olsen CM, Schramm-Sapyta NL, Nekrasova T, Landreth GE, Winder DG (2006) Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J Neurosci 26:3210–3219

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Cuesta J, Burokas A, Mancino S, Kummer S, Martin-Garcia E, Maldonado R (2014) Effects of genetic deletion of endogenous opioid system components on the reinstatement of cocaine-seeking behavior in mice. Neuropsychopharmacology 39:2974–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall FS, Sora I, Uhl GR (2001) Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacology (Berl) 154:43–49

    Article  CAS  Google Scholar 

  • Hall FS, Goeb M, Li XF, Sora I, Uhl GR (2004) mu-Opioid receptor knockout mice display reduced cocaine conditioned place preference but enhanced sensitization of cocaine-induced locomotion. Brain Res Mol Brain Res 121:123–130

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto R, Matsumoto A, Udagawa J, Hioki K, Otani H (2013) Effect of leptin administration on myelination in ob/ob mouse cerebrum after birth. Neuroreport 24:22–29

    Article  CAS  PubMed  Google Scholar 

  • Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–810

    Article  CAS  PubMed  Google Scholar 

  • Houseknecht KL, Baile CA, Matteri RL, Spurlock ME (1998) The biology of leptin: a review. J Anim Sci 76:1405–1420

    CAS  PubMed  Google Scholar 

  • Hummel M, Ansonoff MA, Pintar JE, Unterwald EM (2004) Genetic and pharmacological manipulation of mu opioid receptors in mice reveals a differential effect on behavioral sensitization to cocaine. Neuroscience 125:211–220

    Article  CAS  PubMed  Google Scholar 

  • Kas MJ, van den Bos R, Baars AM, Lubbers M, Lesscher HM, Hillebrand JJ, Schuller AG, Pintar JE, Spruijt BM (2004) Mu-opioid receptor knockout mice show diminished food-anticipatory activity. Eur J Neurosci 20:1624–1632

    Article  PubMed  Google Scholar 

  • Khawaja XZ, Bailey CJ, Green IC (1989) Central mu, delta, and kappa opioid binding sites, and brain and pituitary beta-endorphin and met-enkephalin in genetically obese (ob/ob) and lean mice. Life Sci 44:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Le AD, Poulos CX, Quan B, Chow S (1993) The effects of selective blockade of delta and mu opiate receptors on ethanol consumption by C57BL/6 mice in a restricted access paradigm. Brain Res 630:330–332

    Article  CAS  PubMed  Google Scholar 

  • Lee AM, Zou ME, Lim JP, Stecher J, McMahon T, Messing RO (2013) Deletion of Prkcz increases intermittent ethanol consumption in mice. Alcohol Clin Exp Res 38(1):170−178

  • Leinninger GM (2009) Location, location, location: the CNS sites of leptin action dictate its regulation of homeostatic and hedonic pathways. Int J Obes (Lond) 33(2):S14–S17

    Article  CAS  Google Scholar 

  • Lesscher HM, Hordijk M, Bondar NP, Alekseyenko OV, Burbach JP, van Ree JM, Gerrits MA (2005) Mu-opioid receptors are not involved in acute cocaine-induced locomotor activity nor in development of cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 30:278–285

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh NJ (1974) The psychology of animal learning. Academic, London

    Google Scholar 

  • Manzo L, Gomez MJ, Callejas-Aguilera JE, Donaire R, Sabariego M, Fernandez-Teruel A, Canete A, Blazquez G, Papini MR, Torres C (2014) Relationship between ethanol preference and sensation/novelty seeking. Physiol Behav 133:53–60

    Article  CAS  PubMed  Google Scholar 

  • Meyer AC, Rahman S, Charnigo RJ, Dwoskin LP, Crabbe JC, Bardo MT (2010) Genetics of novelty seeking, amphetamine self-administration and reinstatement using inbred rats. Genes Brain Behav 9(7): 790−798

  • Morales L, Del Olmo N, Valladolid-Acebes I, Fole A, Cano V, Merino B, Stucchi P, Ruggieri D, Lopez L, Alguacil LF, Ruiz-Gayo M (2012) Shift of circadian feeding pattern by high-fat diets is coincident with reward deficits in obese mice. PLoS One 7, e36139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan NS, Guarnieri DJ, DiLeone RJ (2010) Metabolic hormones, dopamine circuits, and feeding. Front Neuroendocrinol 31:104–112

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya Y, Sako N, Imai Y (1995) Enhanced gustatory neural responses to sugars in the diabetic db/db mouse. Am J Physiol 269:R930–R937

    CAS  PubMed  Google Scholar 

  • Olsen CM (2011) Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology 61:1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen CM, Winder DG (2006) A method for single-session cocaine self-administration in the mouse. Psychopharmacology (Berl) 187:13–21

    Article  CAS  Google Scholar 

  • Olsen CM, Winder DG (2009) Operant sensation seeking engages similar neural substrates to operant drug seeking in C57 mice. Neuropsychopharmacology 34:1685–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen CM, Winder DG (2010) Operant sensation seeking in the mouse. J Vis Exp. doi: 10.3791/2292

  • Olsen CM, Winder DG (2012) Stimulus dynamics increase the self-administration of compound visual and auditory stimuli. Neurosci Lett 511:8–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostlund SB, Kosheleff A, Maidment NT, Murphy NP (2013) Decreased consumption of sweet fluids in mu opioid receptor knockout mice: a microstructural analysis of licking behavior. Psychopharmacology (Berl) 229:105–113

    Article  CAS  Google Scholar 

  • Parkitna JR, Sikora M, Golda S, Golembiowska K, Bystrowska B, Engblom D, Bilbao A, Przewlocki R (2013) Novelty-seeking behaviors and the escalation of alcohol drinking after abstinence in mice are controlled by metabotropic glutamate receptor 5 on neurons expressing dopamine d1 receptors. Biol Psychiatry 73:263–270

    Article  CAS  PubMed  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  CAS  PubMed  Google Scholar 

  • Rebec GV, Christensen JR, Guerra C, Bardo MT (1997) Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 776:61–67

    Article  CAS  PubMed  Google Scholar 

  • Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  CAS  PubMed  Google Scholar 

  • Roberts AJ, McDonald JS, Heyser CJ, Kieffer BL, Matthes HW, Koob GF, Gold LH (2000) mu-Opioid receptor knockout mice do not self-administer alcohol. J Pharmacol Exp Ther 293:1002–1008

    CAS  PubMed  Google Scholar 

  • Roseberry AG, Painter T, Mark GP, Williams JT (2007) Decreased vesicular somatodendritic dopamine stores in leptin-deficient mice. J Neurosci 27:7021–7027

    Article  CAS  PubMed  Google Scholar 

  • Sakkou M, Wiedmer P, Anlag K, Hamm A, Seuntjens E, Ettwiller L, Tschop MH, Treier M (2007) A role for brain-specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior. Cell metabolism 5:450–463

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schramm-Sapyta NL, Olsen CM, Winder DG (2006) Cocaine self-administration reduces excitatory responses in the mouse nucleus accumbens shell. Neuropsychopharmacology 31:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF, Friedman JM, Elmquist JK (2009) Leptin targets in the mouse brain. J Comp Neurol 514:518–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanos PK, Subrize M, Delis F, Cooney RN, Culnan D, Sun M, Wang GJ, Volkow ND, Hajnal A (2012) Gastric bypass increases ethanol and water consumption in diet-induced obese rats. Obes Surg 22:1884–1892

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson JL, Borgland SL (2013) Presynaptic leptin action suppresses excitatory synaptic transmission onto ventral tegmental area dopamine neurons. Biol Psychiatry 73:860–868

    Article  CAS  PubMed  Google Scholar 

  • Thomsen M, Caine SB (2007) Intravenous drug self-administration in mice: practical considerations. Behav Genet 37:101–118, Epub 2006 Aug 2

    Article  PubMed  Google Scholar 

  • Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    Article  CAS  PubMed  Google Scholar 

  • Vialou V, Feng J, Robison AJ, Ku SM, Ferguson D, Scobie KN, Mazei-Robison MS, Mouzon E, Nestler EJ (2012) Serum response factor and cAMP response element binding protein are both required for cocaine induction of DeltaFosB. J Neurosci 32:7577–7584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vucetic Z, Kimmel J, Reyes TM (2011) Chronic high-fat diet drives postnatal epigenetic regulation of mu-opioid receptor in the brain. Neuropsychopharmacology 36(6):1199–1206

  • Yoo JH, Lee SY, Loh HH, Ho IK, Jang CG (2004) Altered emotional behaviors and the expression of 5-HT1A and M1 muscarinic receptors in micro-opioid receptor knockout mice. Synapse 54:72–82

    Article  CAS  PubMed  Google Scholar 

  • Yoshida R, Niki M, Jyotaki M, Sanematsu K, Shigemura N, Ninomiya Y (2013) Modulation of sweet responses of taste receptor cells. Semin Cell Dev Biol 24:226–231

    Article  CAS  PubMed  Google Scholar 

  • You ZB, Wang B, Liu QR, Wu Y, Otvos L, Wise RA (2015) Reciprocal inhibitory interactions between the reward-related effects of leptin and cocaine. Neuropsychopharmacology 41(4):1024–1033

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute on Drug Abuse of the National Institutes of Health under award number K99/R00 DA026994. Research was also supported by the Medical College of Wisconsin Research Affairs Committee and the Research and Education Initiative Fund, a component of the Advancing a Healthier Wisconsin Endowment at the Medical College of Wisconsin. We gratefully acknowledge the NIDA Drug Supply Program for providing cocaine. The authors wish to thank Cassie Arthur for helping with data collection. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Olsen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Fluid intake during ethanol intake tests. Fluid intake of ethanol (A) and total fluid intake (B) during two-bottle choice tests. Bar: median, box: quartiles, whiskers: range. (DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muelbl, M.J., Nawarawong, N.N., Clancy, P.T. et al. Responses to drugs of abuse and non-drug rewards in leptin deficient ob/ob mice. Psychopharmacology 233, 2799–2811 (2016). https://doi.org/10.1007/s00213-016-4323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4323-9

Keywords

Navigation