Skip to main content
Log in

Increased mesocorticolimbic dopamine during acute and repeated social defeat stress: modulation by corticotropin releasing factor receptors in the ventral tegmental area

Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Stress activates a subset of dopamine neurons in the ventral tegmental area (VTA), increasing extracellular dopamine in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (NAcSh). The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1 and CRF-R2) are located within the VTA and directly and indirectly influence dopaminergic activity. However, it has yet to be shown in vivo whether VTA CRF receptor activation is necessary for acute and repeated stress-induced dopamine efflux.

Objective

With intra-VTA CRF-R1 and CRF-R2 antagonism during social defeat, we assessed whether blockade of these receptors could prevent stress-induced dopamine increases in the mPFC and NAcSh using in vivo microdialysis.

Methods

Rats were microinjected with a CRF-R1 or CRF-R2 antagonist into the VTA prior to social defeat stress on days 1, 4, 7, and 10. In vivo microdialysis for dopamine in the mPFC and NAcSh was performed during stress on days 1 and 10.

Results

During the first social defeat, extracellular dopamine was significantly elevated in both the mPFC and NAcSh, and this increase in the NAcSh was blocked by intra-VTA CRF-R2, but not CRF-R1, antagonism. During the final social defeat, the dopaminergic increase was neither sensitized nor habituated in the mPFC and NAcSh, and intra-VTA CRF-R2, but not CRF-R1, antagonism prevented the dopamine increase in both brain regions.

Conclusion

These findings show that CRF-R2 in the VTA is necessary for acute and repeated stress-induced dopamine efflux in the NAcSh, but is only recruited into mPFC-projecting dopamine neurons with repeated stress exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–8

    Article  CAS  PubMed  Google Scholar 

  • Anstrom KK, Woodward DJ (2005) Restraint increases dopaminergic burst firing in awake rats. Neuropsychopharmacology 30:1832–40

    Article  CAS  PubMed  Google Scholar 

  • Anstrom KK, Miczek KA, Budygin EA (2009) Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:3–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bangasser DA, Valentino RJ (2012) Sex differences in molecular and cellular substrates of stress. Cell Mol Neurobiol 32:709–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beckstead MJ, Gantz SC, Ford CP, Stenzel-Poore MP, Phillips PE, Mark GP, Williams JT (2009) CRF enhancement of GIRK channel-mediated transmission in dopamine neurons. Neuropsychopharmacology 34:1926–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boyson CO, Holly EN, Shimamoto A, Albrechet-Souza L, Weiner LA, DeBold JF, Miczek KA (2014) Social stress and CRF-dopamine interactions in the VTA: role in long-term escalation of cocaine self-administration. J Neurosci 34:6659–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106:4894–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Covington HE 3rd, Miczek KA (2005) Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacol (Berl) 183:331–40

    Article  CAS  Google Scholar 

  • De Leonibus E, Verheij MM, Mele A, Cools A (2006) Distinct kinds of novelty processing differentially increase extracellular dopamine in different brain regions. Eur J Neurosci 23:1332–40

    Article  PubMed  Google Scholar 

  • Feenstra MG, Botterblom MH (1996) Rapid sampling of extracellular dopamine in the rat prefrontal cortex during food consumption, handling and exposure to novelty. Brain Res 742:17–24

    Article  CAS  PubMed  Google Scholar 

  • Ferrari PF, van Erp AM, Tornatzky W, Miczek KA (2003) Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 17:371–8

    Article  CAS  PubMed  Google Scholar 

  • Fiorillo CD, Williams JT (1998) Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394:78–82

    Article  CAS  PubMed  Google Scholar 

  • Georgieva J, Luthman J, Mohringe B, Magnusson O (1993) Tissue and microdialysate changes after repeated and permanent probe implantation in the striatum of freely moving rats. Brain Res Bull 31:463–70

    Article  CAS  PubMed  Google Scholar 

  • Hahn J, Hopf FW, Bonci A (2009) Chronic cocaine enhances corticotropin-releasing factor-dependent potentiation of excitatory transmission in ventral tegmental area dopamine neurons. J Neurosci 29:6535–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49:1023–39

    Article  CAS  PubMed  Google Scholar 

  • Holly EN, Shimamoto A, Debold JF, Miczek KA (2012) Sex differences in behavioral and neural cross-sensitization and escalated cocaine taking as a result of episodic social defeat stress in rats. Psychopharmacol (Berl) 224:179–88

    Article  CAS  Google Scholar 

  • Imperato A, Puglisi-Allegra S, Casolini P, Zocchi A, Angelucci L (1989) Stress-induced enhancement of dopamine and acetylcholine release in limbic structures: role of corticosterone. Eur J Pharmacol 165:337–8

    Article  CAS  PubMed  Google Scholar 

  • Imperato A, Puglisi-Allegra S, Casolini P, Angelucci L (1991) Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary-adrenocortical axis. Brain Res 538:111–7

    Article  CAS  PubMed  Google Scholar 

  • Imperato A, Angelucci L, Casolini P, Zocchi A, Puglisi-Allegra S (1992) Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res 577:194–9

    Article  CAS  PubMed  Google Scholar 

  • Imperato A, Cabib S, Puglisi-Allegra S (1993) Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor. Brain Res 601:333–6

    Article  CAS  PubMed  Google Scholar 

  • Jordan S, Kramer GL, Zukas PK, Petty F (1994) Previous stress increases in vivo biogenic amine response to swim stress. Neurochem Res 19:1521–5

    Article  CAS  PubMed  Google Scholar 

  • Joseph MH, Datla K, Young AM (2003) The interpretation of the measurement of nucleus accumbens dopamine by in vivo dialysis: the kick, the craving or the cognition? Neurosci Biobehav Rev 27:527–41

    Article  CAS  PubMed  Google Scholar 

  • Korotkova TM, Brown RE, Sergeeva OA, Ponomarenko AA, Haas HL (2006) Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. Eur J Neurosci 23:2677–85

    Article  CAS  PubMed  Google Scholar 

  • Ladurelle N, Roques BP, Dauge V (1995) The transfer of rats from a familiar to a novel environment prolongs the increase of extracellular dopamine efflux induced by CCK8 in the posterior nucleus accumbens. J Neurosci 15:3118–27

    CAS  PubMed  Google Scholar 

  • Lecca D, Cacciapaglia F, Valentini V, Di Chiara G (2006a) Monitoring extracellular dopamine in the rat nucleus accumbens shell and core during acquisition and maintenance of intravenous WIN 55,212-2 self-administration. Psychopharmacol (Berl) 188:63–74

    Article  CAS  Google Scholar 

  • Lecca D, Cacciapaglia F, Valentini V, Gronli J, Spiga S, Di Chiara G (2006b) Preferential increase of extracellular dopamine in the rat nucleus accumbens shell as compared to that in the core during acquisition and maintenance of intravenous nicotine self-administration. Psychopharmacol (Berl) 184:435–46

    Article  CAS  Google Scholar 

  • Lecca D, Cacciapaglia F, Valentini V, Acquas E, Di Chiara G (2007a) Differential neurochemical and behavioral adaptation to cocaine after response contingent and noncontingent exposure in the rat. Psychopharmacol (Berl) 191:653–67

    Article  CAS  Google Scholar 

  • Lecca D, Valentini V, Cacciapaglia F, Acquas E, Di Chiara G (2007b) Reciprocal effects of response contingent and noncontingent intravenous heroin on in vivo nucleus accumbens shell versus core dopamine in the rat: a repeated sampling microdialysis study. Psychopharmacol (Berl) 194:103–16

    Article  CAS  Google Scholar 

  • Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol 70:1451–9

    CAS  PubMed  Google Scholar 

  • Martin-Fardon R, Sandillon F, Thibault J, Privat A, Vignon J (1997) Long-term monitoring of extracellular dopamine concentration in the rat striatum by a repeated microdialysis procedure. J Neurosci Methods 72:123–35

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA (1979) A new test for aggression in rats without aversive stimulation: differential effects of d-amphetamine and cocaine. Psychopharmacol (Berl) 60:253–9

    Article  CAS  Google Scholar 

  • Naef L, Gratton A, Walker CD (2013) Exposure to high fat during early development impairs adaptations in dopamine and neuroendocrine responses to repeated stress. Stress 16:540–8

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington

    Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  CAS  PubMed  Google Scholar 

  • Petty F, Jordan S, Kramer GL, Zukas PK, Wu J (1997) Benzodiazepine prevention of swim stress-induced sensitization of cortical biogenic amines: an in vivo microdialysis study. Neurochem Res 22:1101–4

    Article  CAS  PubMed  Google Scholar 

  • Polter AM, Kauer JA (2014) Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci 39:1179–88

    Article  PubMed Central  PubMed  Google Scholar 

  • Roberto M, Cruz MT, Gilpin NW, Sabino V, Schweitzer P, Bajo M, Cottone P, Madamba SG, Stouffer DG, Zorrilla EP, Koob GF, Siggins GR, Parsons LH (2010) Corticotropin releasing factor-induced amygdala gamma-aminobutyric acid release plays a key role in alcohol dependence. Biol Psychiatry 67:831–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacol (Berl) 158:343–59

    Article  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36:165–86

    Article  CAS  PubMed  Google Scholar 

  • Tagliaferro P, Morales M (2008) Synapses between corticotropin-releasing factor-containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic. J Comp Neurol 506:616–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721:140–9

    Article  CAS  PubMed  Google Scholar 

  • Tornatzky W, Miczek KA (1993) Long-term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol Behav 53:983–93

    Article  CAS  PubMed  Google Scholar 

  • Ungless MA, Singh V, Crowder TL, Yaka R, Ron D, Bonci A (2003) Corticotropin-releasing factor requires CRF binding protein to potentiate NMDA receptors via CRF receptor 2 in dopamine neurons. Neuron 39:401–7

    Article  CAS  PubMed  Google Scholar 

  • Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE (2000) Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 428:191–212

    Article  PubMed  Google Scholar 

  • Wanat MJ, Hopf FW, Stuber GD, Phillips PE, Bonci A (2008) Corticotropin-releasing factor increases mouse ventral tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih. J Physiol 586:2157–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang B, Shaham Y, Zitzman D, Azari S, Wise RA, You ZB (2005) Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: a role in stress-induced relapse to drug seeking. J Neurosci 25:5389–96

    Article  CAS  PubMed  Google Scholar 

  • Williams CL, Buchta WC, Riegel AC (2014) CRF-R2 and the heterosynaptic regulation of VTA glutamate during reinstatement of cocaine seeking. J Neurosci 34:10402–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood SK, Zhang XY, Reyes BA, Lee CS, Van Bockstaele EJ, Valentino RJ (2013) Cellular adaptations of dorsal raphe serotonin neurons associated with the development of active coping in response to social stress. Biol Psychiatry 73:1087–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young AM (2004) Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats. J Neurosci Methods 138:57–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NIDA grant DA031734 to KAM.

Conflict of interest

All authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth N. Holly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holly, E.N., DeBold, J.F. & Miczek, K.A. Increased mesocorticolimbic dopamine during acute and repeated social defeat stress: modulation by corticotropin releasing factor receptors in the ventral tegmental area. Psychopharmacology 232, 4469–4479 (2015). https://doi.org/10.1007/s00213-015-4082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4082-z

Keywords

Navigation