Skip to main content
Log in

Acute ketamine challenge increases resting state prefrontal-hippocampal connectivity in both humans and rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Aberrant prefrontal-hippocampal (PFC-HC) connectivity is disrupted in several psychiatric and at-risk conditions. Advances in rodent functional imaging have opened the possibility that this phenotype could serve as a translational imaging marker for psychiatric research. Recent evidence from functional magnetic resonance imaging (fMRI) studies has indicated an increase in PFC-HC coupling during working-memory tasks in both schizophrenic patients and at-risk populations, in contrast to a decrease in resting-state PFC-HC connectivity. Acute ketamine challenge is widely used in both humans and rats as a pharmacological model to study the mechanisms of N-methyl-d-aspartate (NMDA) receptor hypofunction in the context of psychiatric disorders.

Objectives

We aimed to establish whether acute ketamine challenge has consistent effects in rats and humans by investigating resting-state fMRI PFC-HC connectivity and thus to corroborate its potential utility as a translational probe.

Methods

Twenty-four healthy human subjects (12 females, mean age 25 years) received intravenous doses of either saline (placebo) or ketamine (0.5 mg/kg body weight). Eighteen Sprague-Dawley male rats received either saline or ketamine (25 mg/kg). Resting-state fMRI measurements took place after injections, and the data were analyzed for PFC-HC functional connectivity.

Results

In both species, ketamine induced a robust increase in PFC-HC coupling, in contrast to findings in chronic schizophrenia.

Conclusions

This translational comparison demonstrates a cross-species consistency in pharmacological effect and elucidates ketamine-induced alterations in PFC-HC coupling, a phenotype often disrupted in pathological conditions, which may give clue to understanding of psychiatric disorders and their onset, and help in the development of new treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Becerra L, Upadhyay J, Chang PC, Bishop J, Anderson J, Baumgartner R, Schwarz AJ, Coimbra A, Wallin D, Nutile L, George E, Maier G, Sunkaraneni S, Iyengar S, Evelhoch JL, Bleakman D, Hargreaves R, Borsook D (2013) Parallel buprenorphine phMRI responses in conscious rodents and healthy human subjects. J Pharmacol Exp Ther 345:41–51. doi:10.1124/jpet.112.201145

    Article  CAS  PubMed  Google Scholar 

  • Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37:90–101

    Article  PubMed Central  PubMed  Google Scholar 

  • Burdett NG, Menon DK, Carpenter TA, Jones JG, Hall LD (1995) Visualisation of changes in regional cerebral blood flow (rCBF) produced by ketamine using long TE gradient-echo sequences: preliminary results. Magn Reson Imaging 13:549–553

    Article  CAS  PubMed  Google Scholar 

  • Callicott JH, Egan MF, Mattay VS, Bertolino A, Bone AD, Verchinksi B, Weinberger DR (2003) Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry 160:709–719

    Article  PubMed  Google Scholar 

  • Chai XJ, Ofen N, Gabrieli JD, Whitfield-Gabrieli S (2014) Selective development of anticorrelated networks in the intrinsic functional organization of the human brain. J Cogn Neurosci 26:501–513. doi:10.1162/jocn_a_00517

    Article  PubMed Central  PubMed  Google Scholar 

  • Chudasama Y (2011) Animal models of prefrontal-executive function. Behav Neurosci 125:327–343. doi:10.1037/a0023766

    Article  PubMed  Google Scholar 

  • Corlett PR, Honey GD, Krystal JH, Fletcher PC (2011) Glutamatergic model psychoses: prediction error, learning, and inference. Neuropsychopharmacology 36:294–315. doi:10.1038/npp.2010.163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crosby G, Crane AM, Sokoloff L (1982) Local changes in cerebral glucose utilization during ketamine anesthesia. Anesthesiology 56:437–443

    Article  CAS  PubMed  Google Scholar 

  • D’Souza DC, Singh N, Elander J, Carbuto M, Pittman B, Udo de Haes J, Sjogren M, Peeters P, Ranganathan M, Schipper J (2012) Glycine transporter inhibitor attenuates the psychotomimetic effects of ketamine in healthy males: preliminary evidence. Neuropsychopharmacology 37:1036–1046. doi:10.1038/npp.2011.295

    Article  PubMed Central  PubMed  Google Scholar 

  • Dawson N, Morris BJ, Pratt JA (2013) Subanaesthetic ketamine treatment alters prefrontal cortex connectivity with thalamus and ascending subcortical systems. Schizophr Bull 39:366–377. doi:10.1093/schbul/sbr144; 10.1093/schbul/sbr144

    Article  PubMed Central  PubMed  Google Scholar 

  • Dawson N, McDonald M, Higham DJ, Morris BJ, Pratt JA (2014) Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks. Neuropsychopharmacology 39:1786–1798. doi:10.1038/npp.2014.26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diamond PR, Farmery AD, Atkinson S, Haldar J, Williams N, Cowen PJ, Geddes JR, McShane R (2014) Ketamine infusions for treatment resistant depression: a series of 28 patients treated weekly or twice weekly in an ECT clinic. J Psychopharmacol 28:536–544

    Article  PubMed  Google Scholar 

  • Driesen NR, McCarthy G, Bhagwagar Z, Bloch M, Calhoun V, D’Souza DC, Gueorguieva R, He G, Ramachandran R, Suckow RF, Anticevic A, Morgan PT, Krystal JH (2013) Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol Psychiatry. doi:10.1038/mp.2012.194

    PubMed Central  PubMed  Google Scholar 

  • Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, Haddad L, Mier D, Opitz von Boberfeld C, Raab K, Witt SH, Rietschel M, Cichon S, Meyer-Lindenberg A (2009) Neural mechanisms of a genome-wide supported psychosis variant. Science 324:605. doi:10.1126/science.1167768

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Todd CL, Grace AA (2001) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21:4915–4922

    CAS  PubMed  Google Scholar 

  • Furey ML, Khanna A, Hoffman EM, Drevets WC (2010) Scopolamine produces larger antidepressant and antianxiety effects in women than in men. Neuropsychopharmacology 35:2479–2488. doi:10.1038/npp.2010.131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia LS, Comim CM, Valvassori SS, Reus GZ, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008) Chronic administration of ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain-derived neurotrophic factor protein levels. Basic Clin Pharmacol Toxicol 103:502–506. doi:10.1111/j.1742-7843.2008.00210.x

    Article  CAS  PubMed  Google Scholar 

  • Gass N, Schwarz AJ, Sartorius A, Schenker E, Risterucci C, Spedding M, Zheng L, Meyer-Lindenberg A, Weber-Fahr W (2014) Sub-anesthetic ketamine modulates intrinsic BOLD connectivity within the hippocampal-prefrontal circuit in the rat. Neuropsychopharmacology 39:895–906. doi:10.1038/npp.2013.290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glick SD, Ross DA (1981) Lateralization of function in the rat brain. Trends Neurosci. 4:196–199

  • Godsil BP, Kiss JP, Spedding M, Jay TM (2013) The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol. doi:10.1016/j.euroneuro.2012.10.018

    PubMed  Google Scholar 

  • Grandjean J, Schroeter A, Batata I, Rudin M (2014) Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. Neuroimage 102(Pt 2):838–847. doi:10.1016/j.neuroimage.2014.08.043

    Article  PubMed  Google Scholar 

  • Harrison PJ, Law AJ, Eastwood SL (2003) Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann N Y Acad Sci 1003:94–101

    Article  CAS  PubMed  Google Scholar 

  • Heckers S, Konradi C (2014) GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res. doi:10.1016/j.schres.2014.09.041

  • Hong LE, Summerfelt A, Buchanan RW, O’Donnell P, Thaker GK, Weiler MA, Lahti AC (2010) Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 35:632–640. doi:10.1038/npp.2009.168

    Article  PubMed Central  PubMed  Google Scholar 

  • Igloi K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N (2010) Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc Natl Acad Sci U S A 107:14466–14471. doi:10.1073/pnas.1004243107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joules R, Doyle OM, Schwarz AJ, O’Daly OG, Brammer M, Williams SC, Mehta MA (2015) Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile. Psychopharmacology (Berl). doi:10.1007/s00213-015-3951-9

    Google Scholar 

  • Jung MW, Qin Y, McNaughton BL, Barnes CA (1998) Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cereb Cortex 8:437–450

    Article  CAS  PubMed  Google Scholar 

  • Kerwin RW, Patel S, Meldrum BS, Czudek C, Reynolds GP (1988) Asymmetrical loss of glutamate receptor subtype in left hippocampus in schizophrenia. Lancet 1:583–584

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96:417–431. doi:10.1016/j.nlm.2011.07.002

    Article  PubMed  Google Scholar 

  • Khalili-Mahani N, Niesters M, van Osch MJ, Oitzl M, Veer I, de Rooij M, van Gerven J, van Buchem MA, Beckmann CF, Rombouts SA, Dahan A (2015) Ketamine interactions with biomarkers of stress: a randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. Neuroimage 108:396–409. doi:10.1016/j.neuroimage.2014.12.050

    Article  CAS  PubMed  Google Scholar 

  • Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B (2012) Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct 217:395–409. doi:10.1007/s00429-011-0351-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konradi C, Yang CK, Zimmerman EI, Lohmann KM, Gresch P, Pantazopoulos H, Berretta S, Heckers S (2011) Hippocampal interneurons are abnormal in schizophrenia. Schizophr Res 131:165–173. doi:10.1016/j.schres.2011.06.007

    Article  PubMed Central  PubMed  Google Scholar 

  • Krystal JH, Abi-Saab W, Perry E, D’Souza DC, Liu N, Gueorguieva R, McDougall L, Hunsberger T, Belger A, Levine L, Breier A (2005) Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology (Berl) 179:303–309. doi:10.1007/s00213-004-1982-8

    Article  CAS  Google Scholar 

  • Liang Z, King J, Zhang N (2012) Intrinsic organization of the anesthetized brain. J Neurosci 32:10191. doi:10.1523/JNEUROSCI.1020-12.2012

    Google Scholar 

  • Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008) Disrupted small-world networks in schizophrenia. Brain 131:945–961. doi:10.1093/brain/awn018

    Article  PubMed  Google Scholar 

  • Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA (2003) Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706

    Article  CAS  PubMed  Google Scholar 

  • Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487. doi:10.1523/JNEUROSCI.0333-10.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 158:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, Berman KF (2005) Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62:379–386. doi:10.1001/archpsyc.62.4.379

    Article  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66

    Article  PubMed  Google Scholar 

  • Mion G, Villevieille T (2013) Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther 19:370–380. doi:10.1111/cns.12099

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    CAS  PubMed  Google Scholar 

  • Moran RJ, Jones MW, Blockeel AJ, Adams RA, Stephan KE, Friston KJ (2015) Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats. Neuropsychopharmacology 40:268–277. doi:10.1038/npp.2014.184

    Article  CAS  PubMed  Google Scholar 

  • Morgan CJ, Mofeez A, Brandner B, Bromley L, Curran HV (2004) Ketamine impairs response inhibition and is positively reinforcing in healthy volunteers: a dose-response study. Psychopharmacology (Berl) 172:298–308. doi:10.1007/s00213-003-1656-y

    CAS  Google Scholar 

  • Nelson SR, Howard RB, Cross RS, Samson F (1980) Ketamine-induced changes in regional glucose utilization in the rat brain. Anesthesiology 52:330–334

    Article  CAS  PubMed  Google Scholar 

  • Niciu MJ, Luckenbaugh DA, Ionescu DF, Richards EM, Vande Voort JL, Ballard ED, Brutsche NE, Furey ML, Zarate CA, Jr (2014) Ketamine’s antidepressant efficacy is extended for at least four weeks in subjects with a family history of an alcohol use disorder. Int J Neuropsychopharmacol 18:doi: 10.1093/ijnp/pyu039

  • Olney JW, Farber NB (1995) NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology 13:335–345. doi:10.1016/0893-133X(95)00079-S

    Article  CAS  PubMed  Google Scholar 

  • Phillips KG, Cotel MC, McCarthy AP, Edgar DM, Tricklebank M, O’Neill MJ, Jones MW, Wafford KA (2012) Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia. Neuropharmacology 62:1359–1370. doi:10.1016/j.neuropharm.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  • Pinault D (2008) N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Biol Psychiatry 63:730–735. doi:10.1016/j.biopsych.2007.10.006

    Article  CAS  PubMed  Google Scholar 

  • Pitsikas N, Boultadakis A, Sakellaridis N (2008) Effects of sub-anesthetic doses of ketamine on rats’ spatial and non-spatial recognition memory. Neuroscience 154:454–460. doi:10.1016/j.neuroscience.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM (1995) Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered. J Cogn Neurosci 7:1–24. doi:10.1162/jocn.1995.7.1.1

    Article  CAS  PubMed  Google Scholar 

  • Qi H, Mailliet F, Spedding M, Rocher C, Zhang X, Delagrange P, McEwen B, Jay TM, Svenningsson P (2009) Antidepressants reverse the attenuation of the neurotrophic MEK/MAPK cascade in frontal cortex by elevated platform stress; reversal of effects on LTP is associated with GluA1 phosphorylation. Neuropharmacology 56:37–46. doi:10.1016/j.neuropharm.2008.06.068

    Article  CAS  PubMed  Google Scholar 

  • Rasetti R, Sambataro F, Chen Q, Callicott JH, Mattay VS, Weinberger DR (2011) Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry 68:1207–1217. doi:10.1001/archgenpsychiatry.2011.103

    Article  PubMed  Google Scholar 

  • Rocher C, Spedding M, Munoz C, Jay TM (2004) Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb Cortex 14:224–229

    Article  PubMed  Google Scholar 

  • Rogers LJ (1989) Laterality in animals. Int J Comp Psychol 3(1):5–25

  • Rotarska-Jagiela A, van de Ven V, Oertel-Knochel V, Uhlhaas PJ, Vogeley K, Linden DE (2010) Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res 117:21–30. doi:10.1016/j.schres.2010.01.001

    Article  PubMed  Google Scholar 

  • Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E, Barrow R, Yeo R, Lauriello J, Brooks WM (2005) Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 162:394–396

    Article  PubMed  Google Scholar 

  • Salvadore G, Cornwell BR, Sambataro F, Latov D, Colon-Rosario V, Carver F, Holroyd T, DiazGranados N, Machado-Vieira R, Grillon C, Drevets WC, Zarate CA Jr (2010) Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology 35:1415–1422. doi:10.1038/npp.2010.24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheidegger M, Walter M, Lehmann M, Metzger C, Grimm S, Boeker H, Boesiger P, Henning A, Seifritz E (2012) Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One 7:e44799. doi:10.1371/journal.pone.0044799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, Inbar BP, Corcoran CM, Lieberman JA, Moore H, Small SA (2013) Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron 78:81–93. doi:10.1016/j.neuron.2013.02.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarz AJ, Danckaert A, Reese T, Gozzi A, Paxinos G, Watson C, Merlo-Pich EV, Bifone A (2006) A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI. Neuroimage 32:538–550

    Article  PubMed  Google Scholar 

  • Schwarz AJ, Gass N, Sartorius A, Zheng L, Spedding M, Schenker E, Risterucci C, Meyer-Lindenberg A, Weber-Fahr W (2013) The low-frequency blood oxygenation level-dependent functional connectivity signature of the hippocampal-prefrontal network in the rat brain. Neuroscience 228:243–258. doi:10.1016/j. neuroscience .2012.10.032

    Article  CAS  PubMed  Google Scholar 

  • Seamans JK, Lapish CC, Durstewitz D (2008) Comparing the prefrontal cortex of rats and primates: insights from electrophysiology. Neurotox Res 14:249–262. doi:10.1007/BF03033814

    Article  PubMed  Google Scholar 

  • Seidman LJ, Thermenos HW, Poldrack RA, Peace NK, Koch JK, Faraone SV, Tsuang MT (2006) Altered brain activation in dorsolateral prefrontal cortex in adolescents and young adults at genetic risk for schizophrenia: an fMRI study of working memory. Schizophr Res 85:58–72

    Article  PubMed  Google Scholar 

  • Skoblenick K, Everling S (2012) NMDA antagonist ketamine reduces task selectivity in macaque dorsolateral prefrontal neurons and impairs performance of randomly interleaved prosaccades and antisaccades. J Neurosci 32:12018–12027. doi:10.1523/JNEUROSCI.1510-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Spedding M, Neau I, Harsing L (2003) Brain plasticity and pathology in psychiatric disease: sites of action for potential therapy. Curr Opin Pharmacol 3:33–40

    Article  CAS  PubMed  Google Scholar 

  • Stone JM, Dietrich C, Edden R, Mehta MA, De Simoni S, Reed LJ, Krystal JH, Nutt D, Barker GJ (2012) Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol Psychiatry 17:664–665. doi:10.1038/mp.2011.171

    Article  CAS  PubMed  Google Scholar 

  • Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15:655–669. doi:10.1038/nrn3785

    Article  CAS  PubMed  Google Scholar 

  • Suazo V, Diez A, Tamayo P, Montes C, Molina V (2013) Limbic hyperactivity associated to verbal memory deficit in schizophrenia. J Psychiatr Res 47:843–850. doi:10.1016/j.jpsychires.2013.02.007

    Article  PubMed  Google Scholar 

  • Svenningsson P, Bateup H, Qi H, Takamiya K, Huganir RL, Spedding M, Roth BL, McEwen BS, Greengard P (2007) Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine. Eur J Neurosci 26:3509–3517

    Article  PubMed  Google Scholar 

  • Tagliazucchi E, von Wegner F, Morzelewski A, Brodbeck V, Laufs H (2012) Dynamic BOLD functional connectivity in humans and its electrophysiological correlates. Front Hum Neurosci 6:339. doi:10.3389/fnhum.2012.00339

    Article  PubMed Central  PubMed  Google Scholar 

  • Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17

    Article  PubMed  Google Scholar 

  • van Buuren M, Gladwin TE, Zandbelt BB, van den Heuvel M, Ramsey NF, Kahn RS, Vink M (2009) Cardiorespiratory effects on default-mode network activity as measured with fMRI. Hum Brain Mapp 30:3031–3042. doi:10.1002/hbm.20729

    Article  PubMed  Google Scholar 

  • Vollenweider FX, Kometer M (2010) The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11:642–651. doi:10.1038/nrn2884

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, Angst J (1997) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7:9–24

    Article  CAS  PubMed  Google Scholar 

  • Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2:125–141. doi:10.1089/brain.2012.0073

    Article  PubMed  Google Scholar 

  • Williams KA, Magnuson M, Majeed W, LaConte SM, Peltier SJ, Hu X, Keilholz SD (2010) Comparison of alpha-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magn Reson Imaging 28:995–1003. doi:10.1016/j.mri.2010.03.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wise SP (2008) Forward frontal fields: phylogeny and fundamental function. Trends Neurosci 31:599–608. doi:10.1016/j.tins.2008.08.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang ST, Shi Y, Wang Q, Peng JY, Li BM (2014) Neuronal representation of working memory in the medial prefrontal cortex of rats. Mol Brain 7:61. doi:10.1186/s13041-014-0061-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Zarate CA Jr, Brutsche N, Laje G, Luckenbaugh DA, Venkata SL, Ramamoorthy A, Moaddel R, Wainer IW (2012) Relationship of ketamine's plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry 72:331–338. doi:10.1016/j.biopsych.2012.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Mathews DC, Furey ML (2013) Human biomarkers of rapid antidepressant effects. Biol Psychiatry 73:1142–1155. doi:10.1016/j.biopsych.2012.11.031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeilhofer HU, Swandulla D, Geisslinger G, Brune K (1992) Differential effects of ketamine enantiomers on NMDA receptor currents in cultured neurons. Eur J Pharmacol 213:155–158

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Etherington LA, Hafner AS, Belelli D, Coussen F, Delagrange P, Chaouloff F, Spedding M, Lambert JJ, Choquet D, Groc L (2013) Regulation of AMPA receptor surface trafficking and synaptic plasticity by a cognitive enhancer and antidepressant molecule. Mol Psychiatry 18:471–484. doi:10.1038/mp.2012.80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Y, Shu N, Liu Y, Song M, Hao Y, Liu H, Yu C, Liu Z, Jiang T (2008) Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res 100:120–132. doi:10.1016/j.schres.2007.11.039

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Felix Hörner and Claudia Falfan-Melgoza for their excellent technical assistance.

Conflict of interest

NEWMEDS—the research leading to these results, has received support from the Innovative Medicine Initiative Joint Undertaking under Grant Agreement No. 115008 of which resources are composed of the European Federation of Pharmaceutical Industries and Associations (EFPIA) in-kind contribution and financial contribution from the European Union’s Seventh Framework Program (FP7/2007–2013). Also the work was supported by the BMBF (01EW1110) in the frame of ERA-Net NEURON. AJS is an employee and shareholder of Eli Lilly and Company; ES is an employee of Instituts de Recherches Servier; MS is an employee of Spedding Research Solutions; and CR is an employee of F. Hoffman-La Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Gass.

Additional information

Oliver Grimm and Natalia Gass shared first authorship.

Adam J. Schwarz and Andreas Meyer-Lindenberg shared last authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimm, O., Gass, N., Weber-Fahr, W. et al. Acute ketamine challenge increases resting state prefrontal-hippocampal connectivity in both humans and rats. Psychopharmacology 232, 4231–4241 (2015). https://doi.org/10.1007/s00213-015-4022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4022-y

Keywords

Navigation