Skip to main content
Log in

κ-opioid receptor as a key mediator in the regulation of appetitive 50-kHz ultrasonic vocalizations

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Acute administration of high doses of morphine reduced 50-kHz ultrasonic vocalizations (USVs). Although morphine meets the classical criteria for inducing 50-kHz USVs (it causes place preference and induces dopamine release in nucleus accumbens), it also inhibits appetitive vocalizations.

Objective

The aims of this study were to (i) study the pharmacological impact of κ-opioid (KOR) and μ-opioid receptor (MOR) ligands on the emission of 50-kHz USVs triggered by social interaction after long-term isolation and (ii) analyze the concentrations of the main neurotransmitters in reward-related structures (ventral tegmental area (VTA), nucleus accumbens (NAcc), and medial prefrontal cortex (mPFC)).

Methods

In an attempt to define the effects of opioid-receptor activation on the reward system, we used a social interaction test (after 21 days isolation). HPLC analysis was used to determine the monoamine and amino acid concentrations in reward-related structures.

Results

U-50488 (10.0 mg/kg), morphine (5.0 and 1.0 mg/kg), and naltrexone (5.0 mg/kg) decreased, and nor-BNI (10.0 mg/kg) increased 50-kHz USVs. Acute pretreatment with nor-BNI or naltrexone reduced the 50-kHz suppression induced via morphine. The biochemical data showed several variations between groups regarding dopamine concentrations, serotonin, and their metabolites; these data may suggest that the levels of emitted ultrasound in the 50-kHz band are inversely proportional to the 5-hydroxyindoleacetic acid (5-HIAA)/3-methoxytyramine (3-MT) ratio in the VTA.

Conclusions

These results indicate an important role for KOR in the regulation of 50-kHz USV emissions and suggest that KOR activation may be a key mediator in the regulation of reward responses. Changes in the balance between serotonin and dopamine concentrations in the VTA may be a key predictor for 50-kHz USV emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52(5):1655–1658

    CAS  PubMed  Google Scholar 

  • Adell A, Artigas F (2004) The somatodendric release of dopamine in ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Rev 28:415–431

    CAS  PubMed  Google Scholar 

  • Ahrens AM, Ma ST, Maier EY, Duvauchelle L, Schallert T (2009) Repeated intravenous amphetamine exposure: rapid and persistent sensitization of 50 kHz ultrasonic calls in rats. Behav Brain Res 197:205–209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bals-Kubik R, Ableitner A, Herz A, Shippenberg TS (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495

    CAS  PubMed  Google Scholar 

  • Bankson MG, Yamamoto BK (2004) Serotonin-GABA interactions modulate MDMA-induced mesolimbic dopamine release. J Neurochem 91:852–859

    CAS  PubMed  Google Scholar 

  • Barbano MF, Cador M (2007) Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology (Berl) 191(3):497–506

    CAS  Google Scholar 

  • Barfield RJ, Geyer LA (1975) The ultrasonic postejaculatory vocalization and the postejaculatory refractory period of the male rat. J Comp Physiol Psychol 88(2):723–734

    CAS  PubMed  Google Scholar 

  • Barker DJ, Root DH, Ma S, Jha S, Megehee L, Pawlak AP, West MO (2010) Dose-dependent differences in short ultrasonic vocalizations emitted by rats during cocaine self-administration. Psychopharmacology (Berl) 211:435–442

    CAS  Google Scholar 

  • Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22(11):4709–4719

    CAS  PubMed  Google Scholar 

  • Bozarth MA (1987) Ventral tegmental area reward system. In: Oreland L, Engel J (eds) Brain reward systems and abuse. Raven, New York

    Google Scholar 

  • Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106(12):4894–4899

    PubMed Central  CAS  PubMed  Google Scholar 

  • Britt JP, Bonci A (2013) Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol 23(4):539–545

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815–834

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brudzyński S (2007) Ultrasonic calls of rats as indicator variables of negative or positive states: Acetylocholine-dopamine interaction and acoustic coding. Behav Brain Res 182:261–273

    PubMed  Google Scholar 

  • Brudzynski SM (2009) Communication of adult rats by ultrasonic vocalization: biological, sociobiological, and neuroscience approaches. ILAR J 50:43–50

    CAS  PubMed  Google Scholar 

  • Brudzynski SM (2013) Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Curr Opin Neurobiol 23(3):310–317

    CAS  PubMed  Google Scholar 

  • Brudzyński S, Pniak A (2002) Social contacts and production of 50-kHz short ultrasonic calls in adult rats. J Comp Psychol 116(1):73–82

    PubMed  Google Scholar 

  • Brudzynski SM, Gibson B, Silkstone M, Burgdorf J, Kroes RA, Moskal JR, Panksepp J (2011) Motor and locomotor responses to systemic amphetamine in three lines of selectively bred Long–Evans rats. Pharmacol Biochem Behav 100:119–124

    CAS  PubMed  Google Scholar 

  • Budygin EA, Park J, Bass CE, Grinevich VP, Bonin KD, Wightman RM (2012) Aversive stimulus differentially triggers subsecond dopamine release in reward regions. Neuroscience 201:331–337

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burgdorf J, Panksepp J (2001) Tickling induces reward in adolescent rats. Physiol Behav 72(1–2):167–173

    CAS  PubMed  Google Scholar 

  • Burgdorf J, Knutson B, Panksepp J, Ikemoto S (2001) Nucleus accumbens amphetamine microinjections unconditionally elicit 50-kHz ultrasonic vocalization in rats. Behav Neurosci 115:940–944

    CAS  PubMed  Google Scholar 

  • Burgdorf J, Wood PL, Kroes RA, Moskal JR, Panksepp J (2007) Neurobiology of 50-kHz ultrasonic vocalizations in rats: electrode mapping, lesion, and pharmacology studies. Behav Brain Res 182(2):274–283

    PubMed  Google Scholar 

  • Burgdorf J, Kroes RA, Weiss C, Oh MM, Disterhoft JF, Brudzynski SM, Panksepp J, Moskal JR (2011) Positive emotional learning is regulated in the medial prefrontal cortex by GluN2B-containing NMDA receptors. Neurosci 192:515–523

    CAS  Google Scholar 

  • Castro DC, Berridge KC (2014) Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting”. J Neurosci 34(12):4239–4250

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chefer V, Backman CM, Gigante ED, Shippenberg TS (2013) Kappa opioid receptors on dopaminergic neurons are necessary for kappa-mediated place aversion. Neuropsychopharmacology. doi:10.1038/npp.2013.171

    Google Scholar 

  • Di Chiara G, Imperato A (1988a) Drugs abused by humans preferentially increase synaptic dopamine concentrations in mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    PubMed Central  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988b) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244(3):1067–1080

    PubMed  Google Scholar 

  • Fu XW, Brudzynski SM (1994) High-frequency ultrasonic vocalization induced by intracelebral glutamate in rats. Pharmacol Biochem Behav 49(4):835–841

    CAS  PubMed  Google Scholar 

  • Hamed A, Jaroszewski T, Maciejak P, Szyndler J, Lehner M, Kamecka PA (2009) The effects of buspirone and diazepam on aversive context- and social isolation-induced ultrasonic vocalization. Physiol Behav 98:474–480

    CAS  PubMed  Google Scholar 

  • Hamed A, Taracha E, Szyndler J, Krząścik P, Lehner M, Maciejak P, Skórzewska A, Płaźnik A (2012) The effects of morphine and morphine conditioned context on 50 kHz ultrasonic vocalisation in rats. Behav Brain Res 229(2):447–450

    CAS  PubMed  Google Scholar 

  • Harris GC, Aston-Jones G (2001) Augmented accumbal serotonin levels decrease the preference for a morphine associated environment during withdrawal. Neuropsychopharmacology 24(1):75–85

    CAS  PubMed  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56(1):27–78

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ikemoto S, Bonci A (2014) Neurocircuitry of drug reward. Neuropharmacol 76(Pt B):329–341

    CAS  Google Scholar 

  • Ikemoto S, Pankepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31(1):6–41

    CAS  PubMed  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12(2):483–488

    CAS  PubMed  Google Scholar 

  • Jones GH, Marsden CA, Robbins TW (1990) Increased sensitivity to amphetamine and reward-related stimuli following social isolation in rats: possible disruption of dopamine-dependent mechanisms of nucleus accumbens. Psychopharmacology (Berl) 102:364–372

    CAS  Google Scholar 

  • Joseph MH, Datla K, Young AM (2003) The interpretation of the measurement of nucleus accumbens dopamine by in vivo dialysis: the kick, the craving or the cognition? Neurosci Biobehav Rev 27(6):527–541

    CAS  PubMed  Google Scholar 

  • Kaneda N, Asano M, Nagatsu T (1986) Simple method for simultaneous determination of acetylcholine, choline, noradrenaline, dopamine and serotonin in brain tissue by high-performance liquid chromatography with electrochemical detection. J Chromatogr 36:211–218

    Google Scholar 

  • Knutson B, Burgdorf J, Panksepp J (1999) High-frequency ultrasonic vocalizations index conditioned pharmacological reward in rats. Physiol Behav 66(4):639–643

    CAS  PubMed  Google Scholar 

  • Knutson B, Burgdorf J, Panksepp J (2002) Ultrasonic vocalizations as indices of affective states in rats. Psychol Bull 128(6):961–977

    PubMed  Google Scholar 

  • Lammel S, Hetzel A, Häckel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57(5):760–773

    CAS  PubMed  Google Scholar 

  • Lammel S, Ion DI, Roeper J, Malenka RC (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70(5):855–862

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76:351–359

    CAS  PubMed  Google Scholar 

  • Laurent V, Morse AK, Balleine BW (2014) The role of opioid processes in reward and decision-making. Br J Pharmacol. doi:10.1111/bph.12818

    PubMed  Google Scholar 

  • Leknes S, Tracey I (2008) A common neurobiology for pain and pleasure. Nat Rev Neurosci 9(4):314–320

    CAS  PubMed  Google Scholar 

  • Litvin Y, Blanchard DC, Blanchard RJ (2007) Rat 22 kHz ultrasonic vocalizations as alarm cries. Behav Brain Res 182(2):166–172

    PubMed  Google Scholar 

  • Łopuch S, Popik P (2011) Cooperative behavior of laboratory rats (Rattus norvegicus) in an instrumental task. J Comp Psychol 125(2):250–253

    PubMed  Google Scholar 

  • Ma ST, Maier EY, Ahrens AM, Schallert T, Duvauchelle CL (2010) Repeated intravenous cocaine experience: development and escalation of pre-drug anticipatory 50 kHz ultrasonic vocalizations in rats. Behav Brain Res 212:109–114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maier EY, Ahrens AM, Ma ST, Schallert T, Duvauchelle CL (2010) Cocaine deprivation effect: cue abstinence over weekends boosts anticipatory 50 kHz ultrasonic vocalizations in rats. Behav Brain Res 214:75–79

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manduca A, Campolongo P, Palmery M, Vanderschuren LJ, Cuomo V, Trezza V (2014) Social play behavior, ultrasonic vocalizations and their modulation by morphine and amphetamine in Wistar and Sprague–Dawley rats. Psychopharmacology (Berl) 231(8):1661–1673

    CAS  Google Scholar 

  • Mantz J, Thierry AM, Glowinski J (1989) Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res 476(2):377–381

    CAS  PubMed  Google Scholar 

  • Margolis EB, Hjelmstad GO, Bonci A, Fields HL (2003) Kappa opioid agonists directly inhibit midbrain dopaminergic neurons. J Neurosci 23:9981–9986

    CAS  PubMed  Google Scholar 

  • Meyer PJ, Ma ST, Robinson TE (2011) A cocaine cue is more preferred and evokes more frequency-modulated 50-kHz ultrasonic vocalizations in rats prone to attribute incentive salience to a food cue. Psychopharmacology (Berl) 219(4):999–1009

    Google Scholar 

  • Munn EM, Borszcz GS (2002) Increases in the release and metabolism of serotonin in nucleus parafascicularis thalami following systemically administered morphine in the rat. Neurosci Lett 332(3):151–154

    CAS  PubMed  Google Scholar 

  • Nagai T, Yamada K, Yoshimura M, Ishikawa K, Miyamoto Y, Hashimoto K, Noda Y, Nitta A, Nabeshima T (2004) The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proc Natl Acad Sci U S A 101(10):3650–3655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Narayanan S, Lam H, Christian L, Levine MS, Grandy D, Rubinstein M, Maidment NT (2004) Endogenous opioids mediate basal hedonic tone independent of dopamine D-1 or D-2 receptor activation. Neurosci 124(1):241–246

    CAS  Google Scholar 

  • Pan ZZ (1998) mu-Opposing actions of the kappa-opioid receptor. Trends Pharmacol Sci 19(3):94–98

    CAS  PubMed  Google Scholar 

  • Panksepp J, Burgdorf J (2000) 50-kHz chirping (laughter?) in response to conditioned and unconditioned tickle-induced reward in rats: effects of social housing and genetic variables. Behav Brain Res 115(1):25–38

    CAS  PubMed  Google Scholar 

  • Panksepp J, Jalowiec J, DeEskinazi FG, Bishop P (1985) Opiates and play dominance in juvenile rats. Behav Neurosci 99(3):441–453

    CAS  PubMed  Google Scholar 

  • Panksepp J, Nelson E, Siviy S (1994) Brain opioids and mother-infant social motivation. Acta Paediatr Suppl 397:40–46

    CAS  PubMed  Google Scholar 

  • Panksepp J, Burgdorf J, Beinfeld MC, Kroes RA, Moskal JR (2004) Regional brain cholecystokinin changes as a function of friendly and aggressive social interactions in rats. Brain Res 1025(1–2):75–84

    CAS  PubMed  Google Scholar 

  • Paxinos G,  Watson  C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

  • Peciña S, Berridge KC (2013) Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered ‘wanting’ for reward: entire core and medial shell mapped as substrates for PIT enhancement. Eur J Neurosci 37(9):1529–1540

    PubMed Central  PubMed  Google Scholar 

  • Peng X, Knapp BI, Bidlack JM, Neumeyer J (2007) Pharmacological properties of bivalent ligands containing butorphan linked to nalbuphine, naltrexone and naloxone at μ, δ and κ opioid receptors. Jmed Chem 50(9):2254–2258

    CAS  Google Scholar 

  • Pitchers KK, Coppens CM, Beloate LN, Fuller J, Van S, Frohmader KS, Laviolette SR, Lehman MN, Coolen LM (2014) Endogenous opioid-induced neuroplasticity of dopaminergic neurons in the ventral tegmental area influences natural and opiate reward. J Neurosci 34(26):8825–8836

    PubMed  Google Scholar 

  • Riegel AC, Kalivas PW (2010) Neuroscience: lack of inhibition leads to abuse. Nature 463:743–744

    CAS  PubMed  Google Scholar 

  • Roth-Deri I, Zangen A, Aleli M, Goelman RG, Pelled G, Nakash R, Gispan-Herman I, Green T, Shaham Y, Yadid G (2003) Effect of experimenter-delivered and self-administered cocaine on extracellular beta-endorphin levels in the nucleus accumbens. J Neurochem 84(5):930–938

    CAS  PubMed  Google Scholar 

  • Rowley HL, Martin KF, Marsden CA (1995) Determination of in vivo amino acid neurotransmitters by high-performance liquid chromatography with o-phthalaldehyde-sulphite derivatisation. J Neurosci Methods 57(1):93–99

    CAS  PubMed  Google Scholar 

  • Rygula R, Pluta H, Popik P (2012) Laughing rats are optimistic. PLoS One 7(12):e51959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sadananda M, Natusch C, Karrenbauer B, Schwarting RKW (2012) 50-kHz calls in rats: effects of MDMA and the 5-HT1A receptor agonist 8-OH-DPAT. Pharmacol Biochem Behav 101:258–264

    CAS  PubMed  Google Scholar 

  • Salamone JD (1994) The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res 61(2):117–133

    CAS  PubMed  Google Scholar 

  • Sales GD (1972) Ultrasound and aggressive behaviour in rats and other small mammals. Anim Behav 20:88–100

    CAS  PubMed  Google Scholar 

  • Saunders BT, Robinson TE (2012) The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur J Neurosci 36(4):2521–2532

    PubMed Central  PubMed  Google Scholar 

  • Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24

    PubMed Central  PubMed  Google Scholar 

  • Schwarting RK, Jegan N, Wöhr M (2007) Situational factors, conditions and individual variables which can determine ultrasonic vocalizations in male adult Wistar rats. Behav Brain Res 182(2):208–222

    PubMed  Google Scholar 

  • Shippenberg TS, Zapata A, Chefer VI (2007) Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther 116(2):306–321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simola N, Fenu S, Costa G, Pinna A, Plumitallo A, Morelli M (2012) Pharmacological characterization of 50-kHz ultrasonic vocalizations in rats: comparison of the effects of different psychoactive drugs and relevance in drug-induced reward. Neuropharmacol 63(2):224–234

    CAS  Google Scholar 

  • Siviy SM, Baliko CN, Bowers KS (1997) Rough- and tumble play behavior in Fisher-344 and Buffalo rats: effect of social isolation. Physiol Behav 61(4):597–602

    CAS  PubMed  Google Scholar 

  • Spampinato U, Esposito E, Romandini S, Samanin R (1985) Changes of serotonin and dopamine metabolism in various forebrain areas of rats injected with morphine either systemically or in the raphe nuclei dorsalis and medianus. Brain Res 328(1):89–95

    CAS  PubMed  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1990) Identification of the opioid receptor types mediating beta-endorphin-induced alterations in dopamine release in the nucleus accumbens. Eur J Pharmacol 190(1–2):177–184

    CAS  PubMed  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci U S A 89(6):2046–2050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Svingos AL, Chavkin C, Colago EE, Pickel VM (2001) Major coexpression of kappa-opioid receptors and the dopamine transporter in nucleus accumbens axonal profiles. Synapse 42(3):185–192

    CAS  PubMed  Google Scholar 

  • Szyndler J, Maciejak P, Turzyńska D, Sobolewska A, Lehner M, Taracha E, Walkowiak J, Skórzewska A, Wisłowska-Stanek A, Hamed A, Bidziński A, Płaźnik A (2008) Changes in the concentration of amino acids in the hippocampus of pentylenetetrazole-kindled rats. Neurosci Lett 439(3):245–249

    CAS  PubMed  Google Scholar 

  • Szyndler J, Maciejak P, Turzyńska D, Sobolewska A, Bidziński A, Płaźnik A (2010) Time course of changes in the concentrations of monoamines in the brain structures of pentylenetetrazole-kindled rats. J Neural Transm 117:707–718

    PubMed  Google Scholar 

  • Tanimoto H, Heisenberg M, Gerber B (2004) Experimental psychology: event timing turns punishment to reward. Nature 430(7003):983

    CAS  PubMed  Google Scholar 

  • Tao R, Auerbach SB (1994) Increased extracellular serotonin in rat brain after systemic or intraraphe administration of morphine. J Neurochem 63(2):517–524

    CAS  PubMed  Google Scholar 

  • Taracha E, Hamed A, Krząścik P, Lehner M, Skórzewska A, Płaźnik A, Chrapusta SJ (2012) Inter-individual diversity and intra-individual stability of amphetamine-induced sensitization of frequency-modulated 50-kHz vocalization in Sprague–Dawley rats. Psychopharmacology (Berl) 222(4):619–632

    CAS  Google Scholar 

  • Tejada HA, Counotte DS, Oh E, Ramamoorthy S, Schultz-Kuszak K, Backman CM, Chefer V, O’Donnell P, Shippenberg TS (2013) Prefrontal cortical Kappa-opioid receptor modulation of local neurotransmission and conditioned place aversion. Neuropsychopharmacology 38:1770–1779

    Google Scholar 

  • Thompson B, Leonard K, Brudzyński S (2006) Amphetamine-induced 50 kHz calls from rat nucleus accumbens: a quantitative mapping study and acoustic analysis. Behav Brain Res 168:64–73

    CAS  PubMed  Google Scholar 

  • Trezza V, Baarendse PJ, Vanderschuren LJ (2010) The pleasures of play: pharmacological insights into social reward mechanisms. Trends Pharmacol Sci 31(10):463–469

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trezza V, Campolongo P, Vanderschuren LJ (2011a) Evaluating the rewarding nature of social interactions in laboratory animals. Dev Cogn Neurosci 1(4):444–445

    PubMed  Google Scholar 

  • Trezza V, Damsteegt R, Achterberg EJ, Vanderschuren LJ (2011b) Nucleus accumbens μ-opioid receptors mediate social reward. J Neurosci 31(17):6362–6370

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trigo JM, Martin-Garcia E, Berrendro F, Robeldo P, Maldonado R (2010) The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend 108:183–184

    CAS  PubMed  Google Scholar 

  • Ungless MA (2004) Dopamine: the salient issue. Trends Neurosci 27(12):702–706

    CAS  PubMed  Google Scholar 

  • Ungless MA, Argilli E, Bonci A (2010) Effects of stress and aversion on dopamine neurons: implications for addiction. Neurosci Biobehav Rev 35(2):151–156

    CAS  PubMed  Google Scholar 

  • Valdez GR, Harshberger E (2012) Kappa opioid regulation of anxiety-like behavior during acute ethanol withdrawal. Pharmacol Biochem Behav 102:44–47

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, Niesink RJ, Spruijt BM, Van Ree JM (1995) Mu- and kappa-opioid receptor-mediated opioid effects on social play in juvenile rats. Eur J Pharmacol 276(3):257–266

    CAS  PubMed  Google Scholar 

  • Vanderschuren L, Niesink R, Ree V (1997) The neurobiology of social play behavior in rats. Neurosci Biobehav Rev 21(3):309–326

    CAS  PubMed  Google Scholar 

  • Vivian JA, Miczek KA (1993) Morphine attenuates ultrasonic vocalization during agonistic encounters in adult male rats. Psychopharmacology (Berl) 111(3):367–375

    CAS  Google Scholar 

  • Vivian JA, Miczek KA (1998) Effects of mu and delta opioid agonists and antagonists on affective vocal and reflexive pain responses during social stress in rats. Psychopharmacology (Berl) 139(4):364–375

    CAS  Google Scholar 

  • Wall PM, Messier C (2000) U-69,593 microinjection in the infralimbic cortex reduces anxiety and enhances spontaneous alternation memory in mice. Brain Res 856:259–280

    CAS  PubMed  Google Scholar 

  • Wall PM, Messier C (2002) Infralimbic kappa opioid and muscarinic M1 receptor interactions in the concurrent modulation of anxiety and memory. Psychopharmacology (Berl) 160:233–244

    CAS  Google Scholar 

  • Wang H, Liang S, Burgdorf J, Wess J, Yeomans J (2008) Ultrasonic vocalizations induced by sex and amphetamine in M2, M4, M5 muscarinic and D2 dopamine receptor knockout mice. PLoS One 3:e1893

    PubMed Central  PubMed  Google Scholar 

  • Wassum KM, Cely IC, Maidment NT, Balleine BW (2009) Disruption of endogenous opioid activity during instrumental learning enhances habit acquisition. Neurosci 163(3):770–780

    CAS  Google Scholar 

  • Wiley MD, Poveromo LB, Antapasis J, Herrera CM, Bolaños Guzmán CA (2009) Kappa-opioid system regulates the long-lasting behavioral adaptations induced by early-life exposure to methylphenidate. Neuropsychopharmacol 34(5):1339–1350

    CAS  Google Scholar 

  • Willuhn I, Tose A, Wanat MJ, Hart AS, Hollon NG, Phillips PE, Schwarting RK, Wöhr M (2014) Phasic dopamine release in the nucleus accumbens in response to pro-social 50 kHz ultrasonic vocalizations in rats. J Neurosci 34(32):10616–10623

    PubMed Central  PubMed  Google Scholar 

  • Wintink A, Brudzyński S (2001) The related roles of dopamine and glutamate in the initiation of 50-kHz ultrasonic calls in adult rats. Pharmacol Biochem Behav 70:317–323

    CAS  PubMed  Google Scholar 

  • Wöhr M, Schwarting RK (2007) Ultrasonic communication in rats: can playback of 50-kHz calls induce approach behavior? PLoS One 2(12):e1365

    PubMed Central  PubMed  Google Scholar 

  • Wöhr M, Schwarting RKW (2008) Ultrasonic calling during fear conditioning in the rat: noevidence for an audience effect. Anim Behav 76:749–760

    Google Scholar 

  • Wöhr M, Borta A, Schwarting RK (2005) Overt behavior and ultrasonic vocalization in a fear conditioning paradigm: a dose–response study in the rat. Neurobiol Learn Mem 84(3):228–240

    PubMed  Google Scholar 

  • Wright JM, Gourdon JC, Clarke PB (2010) Identification of multiple call categories within the rich repertoire of adult rat 50 kHz ultrasonic vocalizations: effects of amphetamine and social context. Psychopharmacology (Berl) 211(1):1–13

    CAS  Google Scholar 

  • Wright JM, Deng L, Clarke PB (2012) Failure of rewarding and locomotor stimulant doses of morphine to promote adult rat 50-kHz ultrasonic vocalizations. Psychopharmacology (Berl) 224(4):477–487

    CAS  Google Scholar 

  • Yee N, Schwarting RK, Fuchs E, Wöhr M (2012) Juvenile stress potentiates aversive 22-kHz ultrasonic vocalizations and freezing during auditory fear conditioning in adult male rats. Stress 15(5):533–544

    PubMed  Google Scholar 

  • Zhang Y, Wang Z, Cox DP, Civelli O (2012) Study on the activation of the opioid receptors by a set of morphine derivatives in a well-defined assay system. Neurochem Res 37(2):410–416

    CAS  PubMed  Google Scholar 

  • Zweifel LS, Fadok JP, Argilli E, Garelick MG, Jones GL, Dickerson TM, Allen JM, Mizumori SJ, Bonci A, Palmiter RD (2011) Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 14(5):620–626

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant DEC-2011/03/B/NZ7/04155 from the National Science Center, Poland. The study was supported by the Institute of Psychiatry and Neurology, statutory fund no. 501-003-13-043. We thank Pawel Boguszewski for providing us with BehaView software and Tomasz Jaroszewski for co-creation RatRec software enabling us recording and detailed analysis of the USV FFT spectrograms.

Conflicts of interest

There are no conflicts of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Hamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, A., Szyndler, J., Taracha, E. et al. κ-opioid receptor as a key mediator in the regulation of appetitive 50-kHz ultrasonic vocalizations. Psychopharmacology 232, 1941–1955 (2015). https://doi.org/10.1007/s00213-014-3824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3824-7

Keywords

Navigation