Skip to main content
Log in

Differential effects of clozapine, metoclopramide, haloperidol and risperidone on acquisition and performance of operant responding in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Prior research has not systematically investigated the effects of systemic antipsychotic drugs on operant response acquisition, specifically their behavioural microstructure, reinforcement blunting and relative potency in acquisition compared to performance once operant responding has stabilized.

Objectives

This study aims to systematically investigate the effects of systemically administered clozapine, metoclopramide, haloperidol and risperidone during free operant response acquisition and performance.

Methods

Following magazine training, food-restricted male Wistar rats lever pressed for food reward in 15 min daily operant conditioning sessions.

Results

All drugs suppressed operant response acquisition and performance. Risperidone and metoclopramide, but not clozapine or haloperidol, suppressed operant responding more potently during acquisition than performance. The dopamine D2-like receptor antagonists haloperidol and metoclopramide that affect the ventral and dorsal striatum blunted reinforcement and decreased inactive lever presses in acquisition. In contrast, the atypical antipsychotics clozapine and risperidone that affect the ventral striatum and prefrontal cortex failed to decrease inactive lever presses during acquisition, suggesting a possible decision-making deficit. Haloperidol decreased active lever pressing over performance days. The drugs did not appear to affect rats’ sensitivity to active lever press outcome, even though they suppressed active lever pressing.

Conclusions

Results suggest that reinforcement impact during operant acquisition is dependent on dopamine D2 receptors while drugs affecting, among other areas, the prefrontal cortex produce a deficit in ability to suppress inactive lever press responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrzejewski ME, Sadeghian K, Kelley AE (2004) Central amygdalar and dorsal striatal NMDA receptor involvement in instrumental learning and spontaneous behavior. Behav Neurosci 118:715–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andrzejewski ME, Spencer RC, Kelley AE (2005) Instrumental learning, but not performance, requires dopamine D1-receptor activation in the amygdala. Neuroscience 135:335–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baldwin AE, Holahan MR, Sadeghian K, Kelley AE (2000) N-Methyl-D-aspartate receptor-dependent plasticity within a distributed corticostriatal network mediates appetitive instrumental learning. Behav Neurosci 114:84–98

    Article  CAS  PubMed  Google Scholar 

  • Baldwin AE, Sadeghian K, Holahan MR, Kelley AE (2002a) Appetitive instrumental learning is impaired by inhibition of cAMP-dependent protein kinase within the nucleus accumbens. Neurobiol Lern Mem 77:44–62

    Article  CAS  Google Scholar 

  • Baldwin AE, Sadeghian K, Kelley AE (2002b) Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. Neuroscience 22:1063–1071

    CAS  PubMed  Google Scholar 

  • Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35:48–69

    Article  PubMed Central  PubMed  Google Scholar 

  • Banasikowski TJ et al (2010) Double dissociation of the effects of haloperidol and the dopamine D3 receptor antagonist ABT-127 on acquisition vs. expression of cocaine-conditioned activity in rats. J Pharmacol Exp Ther 335:506–515

    Article  CAS  PubMed  Google Scholar 

  • Belin D et al (2009) Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 199:89–102

    Article  PubMed  Google Scholar 

  • Beninger RJ, Ranaldi R (1993) Microinjections of flupenthixol into the caudate-putamen but not the nucleus accumbens, amygdala or frontal cortex of rats produce intra-session declines in food-rewarded operant responding. Behav Brain Res 55:203–212

    Article  CAS  PubMed  Google Scholar 

  • Beninger RJ et al (1987) Effects of extinction, pimozide, SCH 23390, and metoclopramide on food-rewarded operant responding of rats. Psychopharmacology 92:343–349

    Article  CAS  PubMed  Google Scholar 

  • Beninger RJ, D’Amico C, Ranaldi R (1993) Microinjections of flupenthixol into the caudate putamen of rats produce intrasession declines in food-rewarded operant responding. Pharmacol Biochem Behav 45:343–350

    Article  CAS  PubMed  Google Scholar 

  • Beninger RJ, Baker TW, Florczynski MM, Banasikowski TJ (2010) Regional differences in the action of antipsychotic drugs: implications for cognitive effects in schizophrenic patients. Neurotox Res 18:229–243

    Article  CAS  PubMed  Google Scholar 

  • Dawson JF, Richter AW (2006) Probing three-way interactions in moderated multiple regression: development and application of a slope difference test. J Appl Psychol 91:917–926

    Article  PubMed  Google Scholar 

  • Dunn MJ, Killcross S (2006) Clozapine but not haloperidol treatment reverses sub-chronic phencyclidine-induced disruption of conditional discrimination performance. Behav Brain Res 175:271–277

    Article  CAS  PubMed  Google Scholar 

  • Glass GV, Hopkins KD (1996) Statistical methods in education and psychology, 3rd edn. Allyn and Bacon, Boston

    Google Scholar 

  • Goetghebeur P, Dias R (2009) Comparison of haloperidol, risperidone, sertindole, and modafinil to reverse an attentional set-shifting impairment following subchronic PCP administration in the rat—a back translational study. Psychopharmacology 202:287–293

    Article  CAS  PubMed  Google Scholar 

  • Hernandez PJ, Sadeghian K, Kelley AE (2002) Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nat Neurosci 5:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Hernandez PJ et al (2005) AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core: a context-limited role in the encoding and consolidation of instrumental memory. Learn Mem 12:285–295

    Article  PubMed Central  PubMed  Google Scholar 

  • Hernandez PJ, Schiltz CA, Kelley AE (2006) Dynamic shifts in corticostriatal expression patterns of the immediate early genes Homer 1a and Zif268 during early and late phases of instrumental training. Learn Mem 13:599–608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hudzik TJ, Palmer GC (1995) Effects of anticonvulsants in a novel operant learning paradigm in rats: comparison of remacemide hydrocholoride and FPL 15896AR to other anticonvulsant agents. Epilepsy Res 21:183–193

    Article  CAS  PubMed  Google Scholar 

  • Izaki Y, Hori K, Nomura M (1998) Dopamine and acetylcholine elevation on lever-press acquisition in rat prefrontal cortex. Neurosci Lett 258:33–36

    Article  CAS  PubMed  Google Scholar 

  • Johnston LD, Beninger RJ, Olmstead MC (2001) Pimozide, like extinction, devalues stimuli associated with sucrose taking. Pharmacol Biochem Behav 68:583–590

    Article  CAS  PubMed  Google Scholar 

  • Jonkman S, Everitt BJ (2009) Post-learning infusion of anisomycin into the anterior cingulate cortex impairs instrumental acquisition through an effect on reinforcer valuation. Learn Mem 16:706–713

    Article  PubMed Central  PubMed  Google Scholar 

  • Kelley AE, Holahan MR (1997) Enhanced reward-related responding following cholera toxin infusion into the nucleus accumbens. Synapse 26:46–54

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE, Smith-Roe SL, Holahan MR (1997) Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci U S A 94:12174–12179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lingawi NW, Balleine BW (2012) Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits. J Neurosci 32:1073–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCormick PN et al (2010) The antipsychotics olanzapine, risperidone, clozapine, and haloperidol are D2-selective ex vivo but not in vitro. Neuropsychopharmacology 35:1826–1835

    PubMed Central  CAS  PubMed  Google Scholar 

  • McKee BL, Kelley AE, Moser HR, Andrzejewski ME (2010) Operant learning requires NMDA-receptor activation in the anterior cingulate cortex and dorsomedial striatum, but not in the orbitofrontal cortex. Behav Neurosci 124:500–509

    Article  CAS  PubMed  Google Scholar 

  • McOmish CE, Lira A, Hanks JB, Gingrich JA (2012) Clozapine-induced locomotor suppression is mediated by 5-HT2A receptors in the forebrain. Neuropsychopharmacology 37:2747–2755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robertson GS, Matsumura H, Fibiger HC (1994) Regional differences in the action of antipsychotic drugs: implications for cognitive effects in schizophrenic patients. Pharmacol Exp Ther 271:1058–1066

    CAS  Google Scholar 

  • Salamone JD (1986) Different effects of haloperidol and extinction on instrumental behaviours. Psychopharmacology 88:18–23

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485

    Article  CAS  PubMed  Google Scholar 

  • Sanger DJ (1986) Response decrement patterns after neuroleptic and non-neuroleptic drugs. Psychopharmacology 89:98–104

    CAS  PubMed  Google Scholar 

  • Schotte A, Janssen PF, Megens AA, Leysen JE (1993) Occupancy of central neurotransmitter receptors by risperidone, clozapine and haloperidol, measured ex vivo by quantitative autoradiography. Brain Res 631:191–202

    Article  CAS  PubMed  Google Scholar 

  • Schotte A et al (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 124:57–73

    Article  CAS  PubMed  Google Scholar 

  • Shiflett MW, Brown RA, Balleine (2010) Acquisition and performance of goal-directed instrumental actions depends on ERK signaling in distinct regions of dorsal striatum in rats. J Neurosci 30:2951–2959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith-Roe SL, Kelley AE (2000) Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. Neuroscience 20:7737–7742

    CAS  PubMed  Google Scholar 

  • Tombaugh TN, Tombaugh J, Anisman H (1979) Effects of dopamine receptor blockade on alimentary behaviors: home cage food consumption, magazine training, operant acquisition, and performance. Psychopharmacology 66:219–225

    Article  CAS  PubMed  Google Scholar 

  • Varvel SA et al (2002) Effects of antipsychotic drugs on operant responding after acuse and repeated administration. Psychopharmacology 160:182–191

    Article  CAS  PubMed  Google Scholar 

  • Wasserman JI, Barry RJ, Bradford LB, Delva NJ, Beninger RJ (2012) Probabilistic classification and gambling in patients with schizophrenia receiving medication: comparison of risperidone, olanzapine, clozapine and typical antipsychotics. Psychopharmacology 222:173–183

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Schwartz HV (1981) Pimozide attenuates acquisition of lever-pressing for food in rats. Pharmacol Biochem Behav 15:655–656

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Spinder J, DeWit H, Gerber GJ (1978) Response decrement patterns after neuroleptic and non-neuroleptic drugs. Science 201:262–264

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J NeuroSci 19:181–189

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2005a) Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur J NeuroSci 22:505–512

    Article  PubMed  Google Scholar 

  • Yin HH, Ostlund SB, Knowlton BJ, Balleine BW (2005b) The role of the dorsomedial striatum in instrumental conditioning. Eur J NeuroSci 22:513–523

    Article  PubMed  Google Scholar 

  • Yin HH, Ostlund SB, Balleine BW (2008) Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J NeuroSci 28:1437–1448

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Hans Dringenberg, Janet Menard and M. Cella Olmstead for their valuable advice on this project and manuscript. This study was funded by grant no. 7861-2010 from the Natural Sciences and Engineering Research Council of Canada to RJB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Beninger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, T.W., Florczynski, M.M. & Beninger, R.J. Differential effects of clozapine, metoclopramide, haloperidol and risperidone on acquisition and performance of operant responding in rats. Psychopharmacology 232, 1535–1543 (2015). https://doi.org/10.1007/s00213-014-3789-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3789-6

Keywords

Navigation