Skip to main content
Log in

Social stress and escalated drug self-administration in mice I. Alcohol and corticosterone

Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Stress experiences have been shown to be a risk factor for alcohol abuse in humans; however, a reliable mouse model using episodic social stress has yet to be developed.

Objectives

The current studies investigated the effects of mild and moderate social defeat protocols on plasma corticosterone, voluntary alcohol drinking, and motivation to drink alcohol.

Methods

Outbred Carworth Farms Webster (CFW) mice were socially defeated for 10 days during which the intruder mouse underwent mild (15 bites: mean = 1.5 min) or moderate (30 bites: mean = 3.8 min) stress. Plasma corticosterone was measured on days 1 and 10 of the defeat. Ethanol drinking during continuous access to alcohol was measured 10 days following the defeat or 10 days prior to, during, and 20 days after the defeat. Motivation to drink was determined using a progressive ratio (PR) operant conditioning schedule during intermittent access to alcohol.

Results

Plasma corticosterone was elevated in both stress groups on days 1 and 10. Ethanol consumption and preference following moderate stress were higher (13.3 g/kg/day intake) than both the mild stress group (8.0 g/kg/day) and controls (7.4 g/kg/day). Mice with previously acquired ethanol drinking showed decreased alcohol consumption during the moderate stress followed by an increase 20 days post-defeat. Moderately stressed mice also showed escalated ethanol intake and self-administration during a schedule of intermittent access to alcohol.

Conclusion

Social defeat experiences of moderate intensity and duration led to increased ethanol drinking and preference in CFW mice. Ongoing work investigates the interaction between glucocorticoids and dopaminergic systems as neural mechanisms for stress-escalated alcohol consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barriga C, Martin MI, Tabla R, Ortega E, Rodriguez AB (2001) Circadian rhythm of melatonin, corticosterone and phagocytosis: effect of stress. J Pineal Res 30:180–187

  • Becker HC, Lopez MF, Doremus-Fitzwater TL (2011) Effects of stress on alcohol drinking: a review of animal studies. Psychopharmacology (Berl) 218:131–156

    Article  CAS  Google Scholar 

  • Berton O, McClung CA, DiLeone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    Article  CAS  PubMed  Google Scholar 

  • Boyson CO, Miguel TT, Quadros IM, DeBold JF, Miczek KA (2011) Prevention of social stress-escalated cocaine self-administration by CRF-R1 antagonist in the rat VTA. Psychopharmacology (Berl) 218:257–269

    Article  CAS  Google Scholar 

  • Cabib S, Puglisi-Allegra S (1996) Stress, depression and the mesolimbic dopamine system. Psychopharmacology (Berl) 128:331–342

    Article  CAS  Google Scholar 

  • Chester JA, Barrenha GD, Hughes ML, Keuneke KJ (2008) Age- and sex-dependent effects of footshock stress on subsequent alcohol drinking and acoustic startle behavior in mice selectively bred for high-alcohol preference. Alcohol Clin Exp Res 32:1782–1794

    Article  PubMed  Google Scholar 

  • Covington HE III, Kikusui T, Goodhue J, Nikulina EM, Hammer RP Jr, Miczek KA (2005) Brief social defeat stress: long lasting effects on cocaine taking during a binge and Zif268 mRNA expression in the amygdala and prefrontal cortex. Neuropsychopharmacology 30:310–321

    Article  CAS  PubMed  Google Scholar 

  • Crabbe JC, Belknap JK, Buck KJ (1994) Genetic animal models of alcohol and drug abuse. Science 264:1715–1723

    Article  CAS  PubMed  Google Scholar 

  • Crabbe JC, Phillips TJ, Buck KJ, Cunningham CL, Belknap JK (1999) Identifying genes for alcohol and drug sensitivity: recent progress and future directions. Trends Neurosci 22:173–179

    Article  CAS  PubMed  Google Scholar 

  • Croft AP, Brooks SP, Cole J, Little HJ (2005) Social defeat increases alcohol preference of C57BL/10 strain mice; effect prevented by a CCKB antagonist. Psychopharmacology (Berl) 183:163–170

    Article  CAS  Google Scholar 

  • Czachowski CL, Samson HH (1999) Breakpoint determination and ethanol self-administration using an across-session progressive ratio procedure in the rat. Alcohol Clin Exp Res 23:1580–1586

    Article  CAS  PubMed  Google Scholar 

  • Deroche V, Piazza PV, Deminière JM, Le Moal M, Simon H (1993) Rats orally self-administer corticosterone. Brain Res 622:315–320

    Article  CAS  PubMed  Google Scholar 

  • Faccidomo S, Quadros IM, Takahashi A, Fish EW, Miczek KA (2012) Infralimbic and dorsal raphé microinjection of the 5-HT1B receptor agonist CP-93,129: attenuation of aggressive behavior in CFW male mice. Psychopharmacology (Berl) 222:117–128

    Article  CAS  Google Scholar 

  • Fahlke C, Engel JA, Eriksson CJ, Hard E, Soderpalm B (1994) Involvement of corticosterone in the modulation of ethanol consumption in the rat. Alcohol 11:195–202

    Article  CAS  PubMed  Google Scholar 

  • Fahlke C, Hård E, Eriksson CJ, Engel JA, Hansen S (1995) Consequence of long-term exposure to corticosterone or dexamethasone on ethanol consumption in the adrenalectomized rat, and the effect of type I and type II corticosteroid receptor antagonists. Psychopharmacology (Berl) 117:216–224

    Article  CAS  Google Scholar 

  • Finn DA, Sinnott RS, Ford MM, Long SL, Tanchuck MA, Phillips TJ (2004) Sex differences in the effect of ethanol injection and consumption on brain allopregnanolone levels in C57BL/6 mice. Neuroscience 123:813–819

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, DeBold JF, Miczek KA (2002) Repeated alcohol: behavioral sensitization and alcohol-heightened aggression in mice. Psychopharmacology (Berl) 160:39–48

    Article  CAS  Google Scholar 

  • Funk D, Harding S, Juzytsch W, Lê AD (2005) Effects of unconditioned and conditioned social defeat on alcohol self-administration and reinstatement of alcohol seeking in rats. Psychopharmacology (Berl) 183:341–349

    Article  CAS  Google Scholar 

  • Gibson A, Ginsburg M, Hall M, Hart SL (1979) The effects of opiate receptor agonists and antagonists on the stress-induced secretion of corticosterone in mice. Br J Pharmacol 65:139–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goeders NE (2003) The impact of stress on addiction. Eur Neuropsychopharmacol 13:435–441

    Article  PubMed  Google Scholar 

  • Goeders NE, Guerin GF (1994) Non-contingent electric footshock facilitates the acquisition of intravenous cocain self-administration in rats. Psychopharmacology (Berl) 114:63–70

    Article  CAS  Google Scholar 

  • Golden SA, Covington HE III, Berton O, Russo SJ (2011) A standardized protocol for repeated social defeat stress in mice. Nat Protoc 6:1183–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haller J (2014) The glucocorticoid/aggression relationship in animals and humans: an analysis sensitive to behavioral characteristics glucocorticoid secretion patterns, and neural mechanisms. Curr Top Behav Neurosci. doi:10.1007/7854_2014_284

    PubMed  Google Scholar 

  • Haller J, Albert I, Makara GB (1997) The effects of the α2 adrenoceptor blocker idazoxan on defeat-induced immobility and plasma corticosterone in rats is antagonized by administration of adrenocorticotrophin-antiserum. Behav Pharmacol 8:269–273

    CAS  PubMed  Google Scholar 

  • Han X, Albrechet-Souza L, Doyle MR, Shimamoto A, DeBold JF, Miczek KA (2014) Social stress and escalated drug self-administration in mice II. Cocaine and dopamine in nucleus accumbens. Psychopharmacology (Berl). doi:10.1007/s00213-014-3734-8

  • Haney M, Maccari S, Le Moal M, Simon H, Piazza PV (1995) Social stress increases the acquisition of cocaine self-administration in male and female rats. Brain Res 698:46–52

    Article  CAS  PubMed  Google Scholar 

  • Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134:943–944

    Article  CAS  PubMed  Google Scholar 

  • Hwa LS, Chu A, Levinson SA, Kayyali TM, DeBold JF, Miczek KA (2011) Persistent escalation of alcohol drinking in C57BL/6J mice with intermittent access to 20% ethanol. Alcohol Clin Exp Res 35:1938–1947

    Article  PubMed Central  PubMed  Google Scholar 

  • Hwa LS, DeBold JF, Miczek KA (2013) Alcohol in excess: CRF1 receptors in the rat and mouse VTA and DRN. Psychopharmacology (Berl) 225:313–327

    Article  CAS  Google Scholar 

  • Irwin J, Ahluwalia P, Zacharko RM, Anisman H (1986) Central norepinephrine and plasma corticosterone following acute and chronic stressors: influence of social isolation and handling. Pharmacol Biochem Behav 24:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • José BS, van Oers HA, van de Mheen HD, Garretsen HF, Mackenbach JP (2000) Stressors and alcohol consumption. Alcohol Alcohol 35:307–312

    Article  PubMed  Google Scholar 

  • Kakihana R, Moore JA (1976) Circadian rhythm of corticosterone in mice: the effect of chronic consumption of alcohol. Psychopharmacologia 46:301–305

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–59

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  CAS  PubMed  Google Scholar 

  • Koolhaas JM, Meerlo P, de Boer SF, Strubbe JH, Bohus B (1997) The temporal dynamics of the stress response. Neurosci Biobehav Rev 21:775–782

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtseva NN, Bakshtanovskaya IV, Koryakina LA (1991) Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav 38:315–320

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Schmidt D, Tilders F, Cole M, Smith A, Rivier C (2000a) Prolonged exposure to intermittent alcohol vapors blunts hypothalamic responsiveness to immune and non-immune signals. Alcohol Clin Exp Res 24:110–122

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Schmidt D, Tilders F, Rivier C (2000b) Increased activity of the hypothalamic-pituitary-adrenal axis of rats exposed to alcohol in utero: role of altered pituitary and hypothalamic function. Mol Cell Neurosci 16:515–528

    Article  CAS  PubMed  Google Scholar 

  • Leventhal H, Cleary PD (1980) The smoking problem: a review of the research and theory in behavioral risk modification. Psychol Bull 88:370–405

    Article  CAS  PubMed  Google Scholar 

  • Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 92:180–185

    CAS  Google Scholar 

  • Marti-Carbonell MA, Darbra S, Garau A, Balada F (1992) Hormones and aggression. Arch Neurobiol (Madr) 55:162–174

    CAS  Google Scholar 

  • Martinez M, Phillips PJ, Herbert J (1998) Adaptation in patterns of c-fos expression in the brain associated with exposure to either single or repeated social stress in male rats. Eur J Neurosci 10:20–33

    Article  CAS  PubMed  Google Scholar 

  • McBride WJ, Li TK (1998) Animal models of alcoholism: Neurobiology of high alcohol-drinking behavior in rodents. Crit Rev Neurobiol 12:339–369

  • McClearn GE, Rodgers DA (1959) Differences in alcohol preference among inbred strains of mice. Q J Stud Alcohol 20:691–695

    Google Scholar 

  • Meerlo P, de Boer SF, Koolhaas JM, Daan S, van den Hoofdakker RH (1996) Changes in daily rhythms of body temperature and activity after a single social defeat in rats. Physiol Behav 59:735–739

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, de Almeida RMM (2001) Oral drug self-administration in the home cage of mice: alcohol-heightened aggression and inhibition by the 5-HT1B agonist anpirtoline. Psychopharmacology (Berl) 157:421–429

    Article  CAS  Google Scholar 

  • Miczek KA, Tidey JW (1989) Amphetamines: aggressive and social behavior. In: Asghar K, De Souza E (eds) Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Res Monogr 94:68–100

    CAS  PubMed  Google Scholar 

  • Miczek KA, Thompson ML, Shuster L (1982) Opioid-like analgesia in defeated mice. Science 215:1520–1522

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Yap JJ, Covington HE III (2008) Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol Ther 120:102–128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Middaugh LD, Favara JP, Boggan WO (1989) Ethanol stimulation after chronic exposure in C57 mice. Pharmacol Biochem Behav 34:331–335

    Article  CAS  PubMed  Google Scholar 

  • Middaugh LD, Kelley BM, Bandy ALE, McGroarty KK (1999) Ethanol consumption by C57BL/6 mice: influence of gender and procedural variables. Alcohol 17:175–183

    Article  CAS  PubMed  Google Scholar 

  • Newman EL, Chu A, Bahamón B, Takahashi A, DeBold JF, Miczek KA (2012) NMDA receptor antagonism: escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology (Berl) 224:167–177

    Article  CAS  Google Scholar 

  • Nikulina EM, Covington HE III, Ganschow L, Hammer RP Jr, Miczek KA (2004) Long-term behavioral and neuronal cross-sensitization to amphetamine induced by repeated brief social defeat stress: Fos in the ventral tegmental area and amygdala. Neuroscience 123:857–865

    Article  CAS  PubMed  Google Scholar 

  • Noori HR, Helinski S, Spanagel R (2014) Cluster and meta-analyses on factors influencing stress-induced alcohol drinking and relapse in rodents. Addict Biol 19:225–232

    Article  CAS  PubMed  Google Scholar 

  • Phillips TJ, Crabbe JC (1991) Behavioral studies of genetic differences in alcohol action. In: Crabbe JC (ed) Genetic basis of alcohol and drug actions. Plenum Press, New York, pp 25–104

    Chapter  Google Scholar 

  • Phillips TJ, Roberts AJ, Lessov CN (1997) Behavioral sensitization to ethanol: genetics and the effects of stress. Pharmacol Biochem Behav 57(3):487–493

    Article  CAS  PubMed  Google Scholar 

  • Piazza PV, Le Moal M (1998) The role of stress in drug self-administration. Trends Pharmacol Sci 19:67–74

    Article  CAS  PubMed  Google Scholar 

  • Piazza PV, Deroche V, Deminière JM, Maccari S, Le Moal M, Simon H (1993) Corticosterone in the range of stress-induced levels possesses reinforcing properties: Implications for sensation-seeking behaviors. Proc Natl Acad Sci U S A 90:11738–11742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Puglisi-Allegra S, Imperato A, Angelucci L, Cabib S (1991) Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res 554:217–222

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Dantzer R, MIchaud B, Mormede P, Taghzouti K, Simon H, Lemoal M (1986) Behavioural, physiological and immunological consequences of social status and aggression in chronically coexisting resident-intruder dyads of male rats. Physiol Behav 36:223–228

    Article  CAS  PubMed  Google Scholar 

  • Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC (2005) Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav 84:53–63

  • Richardson NR, Roberts DCS (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  CAS  PubMed  Google Scholar 

  • Richman JA, Flaherty JA, Rospenda KM (1996) Perceived workplace harassment experiences and problem drinking among physicians: broadening the stress/alienation paradigm. Addiction 91:391–403

    Article  CAS  PubMed  Google Scholar 

  • Rodd-Henricks ZA, McKinzie DL, Melendez RI, Berry N, Murphy JM, McBride WJ (2003) Effects of serotonin-3 receptor antagonists on the intracranial self-administration of ethanol within the ventral tegmental area of Wistar rats. Psychopharmacology (Berl) 165:252–259

    CAS  Google Scholar 

  • Rospenda KM, Richman JA, Wislar JS, Flaherty JA (2000) Chronicity of sexual harassment and generalized work-place abuse: effects on drinking outcomes. Addiction 95:1805–1820

    Article  CAS  PubMed  Google Scholar 

  • Rothschild AJ, Langlais PJ, Schatzberg AF, Miller MM, Saloman MS, Lerbinger JE, Cole JO, Bird ED (1985) The effects of a single acute dose of dexamethasone on monoamine and metabolite levels in rat brain. Life Sci 36:2491–2501

    Article  CAS  PubMed  Google Scholar 

  • Rougé-Pont F, Deroche V, Le Moal M, Piazza PV (1998) Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. Eur J Neurosci 10:3903–3907

    Article  PubMed  Google Scholar 

  • Samson HH, Schwarzstevens K, Tolliver GA, Andrews CM, Files FJ (1992) Ethanol drinking patterns in a continuous-access operant situation: effects of ethanol concentration and response requirements. Alcohol 9:409–414

    Article  CAS  PubMed  Google Scholar 

  • Sillaber I, Rammes G, Zimmermann S, Mahal B, Zieglgänsberger W, Wurst W, Holsboer F, Spanagel R (2002) Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors. Science 296:931–933

    Article  CAS  PubMed  Google Scholar 

  • Sinha R (2008) Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci 1141:105–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorg BA, Kalivas PW (1991) Effects of cocaine and footshock stress on extracellular dopamine levels in the ventral striatum. Brain Res 559:29–36

    Article  CAS  PubMed  Google Scholar 

  • Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721:140–149

    Article  CAS  PubMed  Google Scholar 

  • Tidey JW, Miczek KA (1997) Acquisition of cocaine self-administration after social stress: role of accumbens dopamine. Psychopharmacology (Berl) 130:203–212

    Article  CAS  Google Scholar 

  • Tomkins SS (1966) Psychological model for smoking behavior. Am J Public Health Nations Health 56:Suppl-20

  • Tornatzky W, Miczek KA (1993) Long-term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol Behav 53:983–993

    Article  CAS  PubMed  Google Scholar 

  • Uschold-Schmidt N, Nyuyki KD, Füchsl AM, Neumann ID, Reber SO (2012) Chronic psychosocial stress results in sensitization of the HPA axis to acute heterotypic stressors despite a reduction of adrenal in vitro ACTH responsiveness. Psychoneuroendocrinology 37:1676–1687

    Article  CAS  PubMed  Google Scholar 

  • van Erp AM, Miczek KA (2001) Persistent suppression of ethanol self-administration by brief social stress in rats and increased startle response as index of withdrawal. Physiol Behav 73:301–311

    Article  PubMed  Google Scholar 

  • van Erp AM, Tachi N, Miczek KA (2001) Short or continuous social stress: suppression of continuously available ethanol intake in subordinate rats. Behav Pharmacol 12:335–342

    Article  PubMed  Google Scholar 

  • Waller MB, McBride WJ, Gatto GJ, Lumeng L, Li TK (1984) Intragastric self-infusion of ethanol by ethanol-preferring and -nonpreferring lines of rats. Science 225:78–80

    Article  CAS  PubMed  Google Scholar 

  • Weiss IC, Pryce CR, Jongen-Rêlo AL, Nanz-Bahr NI, Feldon J (2004) Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat. Behav Brain Res 152:279–295

    Article  CAS  PubMed  Google Scholar 

  • Wilcox RA, Robinson TE, Becker JB (1986) Enduring enhancement in amphetamine-stimulated striatal dopamine release in vitro produced by prior exposure to amphetamine or stress in vivo. Eur J Pharmacol 124:375–376

    Article  CAS  PubMed  Google Scholar 

  • Yap JJ, Covington HE III, Gale MC, Datta R, Miczek KA (2005) Behavioral sensitization due to social defeat stress in mice: antagonism at mGluR5 and NMDA receptors. Psychopharmacology (Berl) 179:230–239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grants AA013983 and DA031734 (Klaus Miczek, Ph.D.) and F31 AA021622 (Lara Hwa). The authors would like to thank Tom Sopko and Peter Andrew for their outstanding contributions.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus A. Miczek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norman, K.J., Seiden, J.A., Klickstein, J.A. et al. Social stress and escalated drug self-administration in mice I. Alcohol and corticosterone. Psychopharmacology 232, 991–1001 (2015). https://doi.org/10.1007/s00213-014-3733-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3733-9

Keywords

Navigation