Skip to main content
Log in

Sensorimotor gating is disrupted by acute but not chronic systemic exposure to caffeine in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Caffeine is a psychostimulant drug that blocks adenosine A1 and A2A receptors (A1Rs and A2ARs). However, its ability to disrupt early sensory gating as indexed by prepulse inhibition (PPI), which is consistently disrupted by other psychostimulant agents, has never been convincingly demonstrated.

Objectives

To compare the impact of caffeine on PPI expression in C57BL/6 mice by two dose-response experiments differing in terms of chronicity, regimen, and route of administration. To study separately the acute effect of selective antagonists against A1R or A2AR.

Methods

Caffeine (10, 30, 100 mg/kg, intraperitoneal (i.p.)) was either administered shortly before testing or via caffeinated drinking water (0.3, 1.0, 2 g/l) in home cages over 3 weeks. Two separate dose-response studies tested the acute effect of the selective A1R antagonist, 1,3 dipropyl-8 cyclopentyl xanthine (DPCPX), and the selective A2AR antagonist, 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] (SCH 58261) (0.2, 1.0, 5.0 mg/kg, i.p.). The two drugs were combined in a final experiment to identify their potential synergistic interaction.

Results

While the two lower acute doses of caffeine attenuated PPI, the highest dose potentiated PPI. By contrast, chronic caffeine exposure did not affect PPI. Neither DPCPX nor SCH 58261 altered PPI, and no synergism was observed when the two drugs were combined.

Conclusions

This is the first demonstration that acute caffeine disrupts PPI, but the relative contribution of A1R and A2AR blockade remains unclear, and possible non-adenosinergic mechanisms cannot be ruled out. The null effect under chronic caffeine exposure might involve the development of tolerance, but the precise receptor subtypes involved also warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bakshi VP, Geyer MA, Taaid N, Swerdlow NR (1995) A comparison of the effects of amphetamine, strychnine and caffeine on prepulse inhibition and latent inhibition. Behav Pharmacol 6:801–809

    Article  PubMed  CAS  Google Scholar 

  • Bast T, Zhang WN, Feldon J (2001) Hyperactivity, decreased startle reactivity, and disrupted prepulse inhibition following disinhibition of the rat ventral hippocampus by the GABA(A) receptor antagonist picrotoxin. Psychopharmacology 156:225–233

    Article  PubMed  CAS  Google Scholar 

  • Boison D, Singer P, Shen HY, Feldon J, Yee BK (2012) Adenosine hypothesis of schizophrenia—opportunities for pharmacotherapy. Neuropharmacology 62:1527–1543

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Broderick P, Benjamin AB (2004) Caffeine and psychiatric symptoms: a review. J Okla State Med Assoc 97:538–542

    PubMed  Google Scholar 

  • Chen JF, Yu L, Shen HY, He JC, Wang X, Zheng R (2010) What knock-out animals tell us about the effects of caffeine. J Alzheimers Dis 20(Suppl 1):S17–S24

    PubMed  CAS  Google Scholar 

  • Cohen BE, Lee G, Jacobson KA, Kim YC, Huang Z, Sorscher EJ, Pollard HB (1997) 8-cyclopentyl-1,3-dipropylxanthine and other xanthines differentially bind to the wild-type and delta F508 first nucleotide binding fold (NBF-1) domains of the cystic fibrosis transmembrane conductance regulator. Biochemistry 36:6455–6461

    Article  PubMed  CAS  Google Scholar 

  • Csomor PA, Yee BK, Vollenweider FX, Feldon J, Nicolet T, Quednow BB (2008) On the influence of baseline startle reactivity on the indexation of prepulse inhibition. Behav Neurosci 122:885–900

    Article  PubMed  Google Scholar 

  • Cunha RA, Agostinho PM (2010) Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J Alzheimers Dis 20(Suppl 1):S95–S116

    PubMed  CAS  Google Scholar 

  • Dalvi RR (1986) Acute and chronic toxicity of caffeine: a review. Vet Hum Toxicol 28:144–150

    Google Scholar 

  • Dostmann WR (1995) (RP)-cAMPS inhibits the cAMP-dependent protein kinase by blocking the cAMP-induced conformational transition. FEBS Lett 375:231–234

    Google Scholar 

  • Ferré S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    Article  PubMed  Google Scholar 

  • Flaten MA, Elden A (1999) Caffeine and prepulse inhibition of the acoustic startle reflex. Psychopharmacology 147:322–330

    Article  PubMed  CAS  Google Scholar 

  • Flood DG, Gasior M, Marino MJ (2007) Variables affecting prepulse inhibition of the startle reflex and the response to antipsychotics in DBA/2NCrl mice. Psychopharmacology 195:203–211

    Article  PubMed  CAS  Google Scholar 

  • Flood DG, Zuvich E, Marino MJ, Gasior M (2010) The effects of d-amphetamine, methylphenidate, sydnocarb, and caffeine on prepulse inhibition of the startle reflex in DBA/2 mice. Psychopharmacology 211:325–336

    Article  PubMed  CAS  Google Scholar 

  • Francis SH, Sekhar KR, Ke H, Corbin JD (2011) Inhibition of cyclic nucleotide phosphodiesterases by methylxanthines and related compounds. Handb Exp Pharmacol 200:93–133

    Article  PubMed  CAS  Google Scholar 

  • Frary CD, Johnson RK, Wang MQ (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 105:110–113

    Article  PubMed  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Garrett BE, Griffiths RR (1997) The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol Biochem Behav 57:533–541

    Article  PubMed  CAS  Google Scholar 

  • Graham FK (1975) The more or less startling effects of weak prestimulation. Psychophysiology 12:238–248

    Article  PubMed  CAS  Google Scholar 

  • Grauer SM, Pulito VL, Navarra RL, Kelly MP, Kelley C, Graf R, Langen B, Logue S, Brennan J, Jiang L, Charych E, Egerland U, Liu F, Marquis KL, Malamas M, Hage T, Comery TA, Brandon NJ (2009) Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Ther 331:574–590

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RR, Juliano LM, Chausmer A (2003) Caffeine: pharmacology and clinical effects. In: Graham AW, Schultz TK, Mayo-Smth MF, Ries RK, Wilford BB (eds) Principles of addiction medicine, Third editionth edn. American Society of Addiction Medicine, Chevy Chase, pp 193–224

    Google Scholar 

  • Hauber W, Koch M (1997) Adenosine A2a receptors in the nucleus accumbens modulate prepulse inhibition of the startle response. Neuroreport 8:1515–1518

    Article  PubMed  CAS  Google Scholar 

  • Hauser J, Rudolph U, Keist R, Möhler H, Feldon J, Yee BK (2005) Hippocampal alpha5 subunit-containing GABAA receptors modulate the expression of prepulse inhibition. Mol Psychiatry 10:201–207

    Article  PubMed  CAS  Google Scholar 

  • Hsu HR, Mei YY, Wu CY, Chiu PH, Chen HH (2009) Behavioural and toxic interaction profile of ketamine in combination with caffeine. Basic Clin Pharmacol Toxicol 104:379–383

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR, McHugh P, Holtzman S (1998) Caffeine and schizophrenia. Psychiatr Serv 49:1415–1417

    PubMed  CAS  Google Scholar 

  • Jacobson KA, von Lubitz DK, Daly JW, Fredholm BB (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 17:108–113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kanes SJ, Tokarczyk J, Siegel SJ, Bilker W, Abel T, Kelly MP (2007) Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience 144:239–246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kelly MP, Isiegas C, Cheung Y-F, Tokarczyk J, Yang X, Esposito MF, Rapoport DA, Fabian SA, Siegel SJ, Wand G, Houslay MD, Kanes SJ, Abel T (2007) Constitutive activation of Gαs within forebrain neurons causes deficits in sensorimotor gating because of PKA-dependent decreases in cAMP. Neuropsychopharmacology 32:577–588

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khalifa AE (2005) Effect of cefepime on startle amplitude and prepulse inhibition of startle reflex in rats: manipulation of GABAA receptor function with midazolam. Methods Find Exp Clin Pharmacol 27:639–644

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Hauber W (1998) Regulation of sensorimotor gating by interactions of dopamine and adenosine in the rat. Behav Pharmacol 9:23–29

    Article  PubMed  CAS  Google Scholar 

  • Lucas PB, Pickar D, Kelsoe J, Rapaport M, Pato C, Hommer D (1990) Effects of the acute administration of caffeine in patients with schizophrenia. Biol Psychiatry 28:35–40

    Article  PubMed  CAS  Google Scholar 

  • Mumford GK, Holtzman SG (1991) Qualitative differences in the discriminative stimulus effects of low and high doses of caffeine in the rat. J Pharmacol Exp Ther 258:857–865

    PubMed  CAS  Google Scholar 

  • Munzar P, Justinova Z, Kutkat SW, Ferre S, Goldberg SR (2002) Adenosinergic modulation of the discriminative-stimulus effects of methamphetamine in rats. Psychopharmacology 161:348–355

    Article  PubMed  CAS  Google Scholar 

  • Nagel J, Schladebach H, Koch M, Schwienbacher I, Müller CE, Hauber W (2003) Effects of an adenosine A2A receptor blockade in the nucleus accumbens on locomotion, feeding, and prepulse inhibition in rats. Synapse 49:279–286

    Article  PubMed  CAS  Google Scholar 

  • Nehlig A, Daval JL, Debru G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev 17:139–170

    Article  PubMed  CAS  Google Scholar 

  • Norris CM, Blumenthal TD (1996) A relationship between inhibition of the acoustic startle response and the protection of prepulse processing. Psychobiology 24:160–168

    Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology 156:284–290

    Article  PubMed  CAS  Google Scholar 

  • Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology 132:169–180

    Article  PubMed  CAS  Google Scholar 

  • Quarta D, Ferré S, Solinas M, You ZB, Hockmeyer J, Popoli P, Goldberg SR (2004) Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J Neurochem 88:1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastião AM (2010) Caffeine and adenosine. J Alzheimers Dis 2010(20 Suppl 1):S3–S15

    Google Scholar 

  • Schmidt CJ, Chapin DS, Cianfrogna J, Corman ML, Hajos M, Harms JF, Hoffman WE, Lebel LA, McCarthy SA, Nelson FR, Proulx- LaFrance C, Majchrzak MJ, Ramirez AD, Schmidt K, Seymour PA, Siuciak JA, Tingley FD III, Williams RD, Verhoest PR, Menniti FS (2008) Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 325:681–690

    Article  PubMed  CAS  Google Scholar 

  • Schwienbacher I, Fendt M, Hauber W, Koch M (2002) Dopamine D1 receptors and adenosine A1 receptors in the rat nucleus accumbens regulate motor activity but not prepulse inhibition. Eur J Pharmacol 444:161–169

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Yee BK (2012) Reversal of scopolamine-induced disruption of prepulse inhibition by clozapine in mice. Pharmacol Biochem Behav 101:107–114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singer P, Feldon J, Yee BK (2009) Are DBA/2 mice associated with schizophrenia-like endophenotypes? A behavioural contrast with C57BL/6 mice. Psychopharmacology 206:677–698

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Masten VL, Geyer MA (1990) Schizophrenic-like sensorimotor gating abnormalities in rats following dopamine infusion into the nucleus accumbens. Psychopharmacology (Berl) 101:414–420

    Article  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA (2000a) Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 11:185–204

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Eastvold A, Gerbranda T, Uyan KM, Hartman P, Doan Q, Auerbach P (2000b) Effects of caffeine on sensorimotor gating of the startle reflex in normal control subjects: impact of caffeine intake and withdrawal. Psychopharmacology 151:368–378

    Article  PubMed  CAS  Google Scholar 

  • Van der Stelt O, Snel J (1993) Effects of caffeine on human information processing. In: Garattini S (ed) Caffeine, coffee, and health. Raven, New York, pp 291–316

    Google Scholar 

  • Weber M, Breier M, Ko D, Thangaraj N, Marzan DE, Swerdlow NR (2009) Evaluating the antipsychotic profile of the preferential PDE10A inhibitor, papaverine. Psychopharmacology 203:723–735

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang JN, Chen JF, Fredholm BB (2009) Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. Am J Physiol Heart Circ Physiol 296:H1141–H1149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yee BK, Feldon J (2009) Distinct forms of prepulse inhibition disruption distinguishable by the associated changes in prepulse-elicited reaction. Behav Brain Res 204:387–395

    Article  PubMed  Google Scholar 

  • Yee BK, Chang DL, Feldon J (2004) The Effects of dizocilpine and phencyclidine on prepulse inhibition of the acoustic startle reflex and on prepulse-elicited reactivity in C57BL6 mice. Neuropsychopharmacology 29:1865–1877

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Chang T, Pietropaolo S, Feldon J (2005a) The expression of prepulse inhibition of the acoustic startle reflex as a function of three pulse stimulus intensities, three prepulse stimulus intensities, and three levels of startle responsiveness in C57BL6/J mice. Behav Brain Res 163:265–276

    Article  PubMed  Google Scholar 

  • Yee BK, Keist R, von Boehmer L, Studer R, Benke D, Hagenbuch N, Dong Y, Malenka RC, Fritschy JM, Bluethmann H, Feldon J, Möhler H, Rudolph U (2005b) A schizophrenia-related sensorimotor deficit links alpha 3-containing GABAA receptors to a dopamine hyperfunction. Proc Natl Acad Sci U S A 102:17154–17159

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yeomans JS, Bosch D, Alves N, Daros A, Ure RJ, Schmid S (2010) GABA receptors and prepulse inhibition of acoustic startle in mice and rats. Eur J Neurosci 31:2053–2061

    Article  PubMed  Google Scholar 

  • Zhang J, Forkstam C, Engel JA, Svensson L (2000) Role of dopamine in prepulse inhibition of acoustic startle. Psychopharmacology 149:181–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the US National Institutes of Health (NIH) (Grant R01MH083973) and the Legacy Foundation Grant awarded to Benjamin K. Yee.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Singer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubroqua, S., Yee, B.K. & Singer, P. Sensorimotor gating is disrupted by acute but not chronic systemic exposure to caffeine in mice. Psychopharmacology 231, 4087–4098 (2014). https://doi.org/10.1007/s00213-014-3548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3548-8

Keywords

Navigation