Skip to main content
Log in

The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers

Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Knowing how commonly used drugs affect performance monitoring is of great importance, because drug use is often associated with compromised behavioral control. Two of the most commonly used recreational drugs in the western world, 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) and ethanol (alcohol), are also often used in combination. The error-related negativity (ERN), correct-related negativity (CRN), and N2 are electrophysiological indices of performance monitoring.

Objectives

The present study aimed to investigate how ethanol, MDMA, and their co-administration affect performance monitoring as indexed by the electrophysiological correlates.

Methods

Behavioral and EEG data were obtained from 14 healthy volunteers during execution of a speeded choice-reaction-time task after administration of ethanol, MDMA, and combined ethanol and MDMA, in a double-blind, placebo-controlled, randomized crossover design.

Results

Ethanol significantly reduced ERN amplitudes, while administration of MDMA did not affect the ERN. Co-administration of MDMA and ethanol did not further impair nor ameliorate the effect of ethanol alone. No drug effects on CRN nor N2 were observed.

Discussion

A decreased ERN following ethanol administration is in line with previous work and offers further support for the impairing effects of alcohol intoxication on performance monitoring. This impairment may underlie maladaptive behavior in people who are under influence. Moreover, these data demonstrate for the first time that MDMA does not affect performance monitoring nor does it interact with ethanol in this process. These findings corroborate the notion that MDMA leaves central executive functions relatively unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts K, De Houwer J, Pourtois G (2013) Erroneous and correct actions have a different affective valence: evidence from ERPs. Emotion 13(5):960–973

    Article  PubMed  Google Scholar 

  • Allain S, Carbonnell L, Falkenstein M, Burle B, Vidal F (2004) The modulation of the Ne-like wave on correct responses foreshadows errors. Neurosci Lett 372(1–2):161–166

    Article  CAS  PubMed  Google Scholar 

  • Barrett SP, Darredeau C, Pihl RO (2006) Patterns of simultaneous polysubstance use in drug using university students. Hum Psychopharmacol 21:255–263

    Article  PubMed  Google Scholar 

  • Bartholow BD, Pearson MA, Dickter CL, Sher KJ, Fabiani M, Gratton G (2005) Strategic control and medial frontal negativity: beyond errors and response conflict. Psychophysiology 42(1):33–42

    Article  PubMed  Google Scholar 

  • Bartholow BD, Henry EA, Lust SA, Saults JS, Wood PK (2012) Alcohol effects on performance monitoring and adjustment: affect modulation and impairment of evaluative cognitive control. J Abnorm Psychol 121:173–186

    Article  PubMed  Google Scholar 

  • Campbell KB, Lowick BM (1987) Ethanol and event-related potentials: the influence of distractor stimuli. Alcohol 4(4):257–263

    Article  CAS  PubMed  Google Scholar 

  • Clayson PE, Clawson A, Larson MJ (2012) The effects of induced state negative affect on performance monitoring processes. Soc Cogn Affect Neurosci 7(6):677–688

    Article  PubMed Central  PubMed  Google Scholar 

  • Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55:343–361

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn ERA, Ullsperger M (2011) Pathological changes in performance monitoring. In: Mars RB, Sallet J, Rushworth M, Yeung N (eds) Neural basis of motivational and cognitive control. MIT Press, Cambridge, pp 263–280

    Chapter  Google Scholar 

  • de Bruijn ERA, Hulstijn W, Verkes RJ, Ruigt GS, Sabbe BG (2004) Drug-induced stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology (Berl) 177:151–160

    Article  CAS  Google Scholar 

  • de Bruijn ERA, Sabbe BG, Hulstijn W, Ruigt GS, Verkes RJ (2006) Effects of antipsychotic and antidepressant drugs on action monitoring in healthy volunteers. Brain Res 1105:122–129

    Article  PubMed  Google Scholar 

  • de Bruijn ERA, de Lange FP, von Cramon DY, Ullsperger M (2009) When errors are rewarding. J Neurosci 29(39):12183–12186

    Article  PubMed  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25(50):11730–111737

    Article  CAS  PubMed  Google Scholar 

  • Dumont GJH, Verkes RJ (2006) A review of acute effects of 3,4-methylenedioxymethamphetamine in healthy volunteers. J Psychopharmacol 20:176–187

    Article  CAS  PubMed  Google Scholar 

  • Dumont GJ, Wezenberg E, Valkenberg MM, de Jong CA, Buitelaar JK, van Gerven JM, Verkes RJ (2008) Acute neuropsychological effects of MDMA and ethanol (co-)administration in healthy volunteers. Psychopharmacology (Berl) 197:465–474

    Article  CAS  Google Scholar 

  • Dumont GJH, Kramers C, Sweep FC, Willemsen JJ, Touw DJ, Schoemaker RC, van Gerven JM, Buitelaar JK, Verkes RJ (2010a) Ethanol co-administration moderates 3,4-methylenedioxymethamphetamine effects on human physiology. J Psychopharmacol 24:165–174

    Article  CAS  PubMed  Google Scholar 

  • Dumont GJH, Schoemaker RC, Touw DJ, Sweep FC, Buitelaar JK, van Gerven JM, Verkes RJ (2010b) Acute psychomotor effects of MDMA and ethanol (co-) administration over time in healthy volunteers. J Psychopharmacol 24:155–164

    Article  CAS  PubMed  Google Scholar 

  • Dumont GJH, Van Hasselt JG, De KM, van Gerven JM, Touw DJ, Buitelaar JK, Verkes RJ (2011) Acute psychomotor, memory and subjective effects of MDMA and THC co-administration over time in healthy volunteers. J Psychopharmacol 25:478–489

    Article  CAS  PubMed  Google Scholar 

  • Easdon C, Izenberg A, Armilio ML, Yu H, Alain C (2005) Alcohol consumption impairs stimulus- and error-related processing during a Go/No-Go Task. Brain Res Cogn Brain Res 25:873–883

    Article  CAS  PubMed  Google Scholar 

  • Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a non-search task. Percept Psychophys 16:143–149

    Article  Google Scholar 

  • Euser AS, Franken IH (2012) Alcohol affects the emotional modulation of cognitive control: an event-related brain potential study. Psychopharmacology (Berl) 222(3):459–476

    Article  CAS  Google Scholar 

  • Euser AS, van Meel CS, Snelleman M, Franken IH (2011) Acute effects of alcohol on feedback processing and outcome evaluation during risky decision-making: an ERP study. Psychopharmacology (Berl) 217:111–125

    Article  CAS  Google Scholar 

  • Falkenstein M, Hohnsbein J, Hoormann J, Blanke L (1990) Effects of errors in choice reaction tasks on the ERP under focused and divided attention. In: Brunia CHM, Gaillard AWK, Kok A (eds) Psychophysiological brain research. Tilburg University Press, Tilburg, pp 192–195

    Google Scholar 

  • Fallgatter AJ, Herrmann MJ, Roemmler J, Ehlis AC, Wagener A, Heidrich A, Ortega G, Zeng Y, Lesch KP (2004) Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacology 29:1506–1511

    Article  CAS  PubMed  Google Scholar 

  • Ford JM, Whitfield SL, Mathalon DH (2011) The neuroanatomy of conflict and error: ERP and fMRI. In: Ullsperger M, Falkenstein M (eds) Errors, conflicts, and the brain. Current opinions on performance monitoring. MPI of cognitive neuroscience, Leipzig, pp 42–55

    Google Scholar 

  • Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error detection and compensation. Psychol Sci 4:385–390

    Article  Google Scholar 

  • Gouzoulis-Mayfrank E, Daumann J (2006) The confounding problem of polydrug use in recreational ecstasy/MDMA users: a brief overview. J Psychopharmacol 20:188–193

    Article  CAS  PubMed  Google Scholar 

  • Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55(4):468–484

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Hernández-López C, Farré M, Roset PN, Menoyo E, Pizarro N, Ortuño J, Torrens M, Camí J, de La Torre R (2002) 3,4-Methylenedioxymethamphetamine (ecstasy) and alcohol interactions in humans: psychomotor performance, subjective effects, and pharmacokinetics. J Pharmacol Exp Ther 300(1):236–244

    Article  PubMed  Google Scholar 

  • Holroyd CB, Yeung N (2003) Alcohol and error processing. Trends Neurosci 26(8): 402--404

  • Iacono WG, Malone SM, McGue M (2003) Substance use disorders, externalizing psychophathology, and P300 event-related potential amplitude. Int Psychophysiol 48(2):147–178

    Article  Google Scholar 

  • Jääskeläinen IP, Näätänen R, Sillanaukee P (1996) Effect of acute ethanol on auditory and visual event-related potentials: a review and reinterpretation. Biol Psychiatry 40(4):284–291

    Article  PubMed  Google Scholar 

  • Kashem MA, Ahmed S, Sarker R, Ahmed EU, Hargreaves GA, McGregor IS (2012) Long-term daily access to alcohol alters dopamine-related synthesis and signaling proteins in the rat striatum. Neurochem Int 61:1280–1288

    Article  CAS  PubMed  Google Scholar 

  • Kenemans JL, Kähkönen S (2011) How human electrophysiology informs psychopharmacology: from bottom–up driven processing to top–down control. Neuropsychopharmacology 36:26–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kopp B, Mattler U, Goertz R, Rist F (1996) N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalogr Clin Neurophysiol 99:19–27

    Article  CAS  PubMed  Google Scholar 

  • Kuypers KPC, Samyn N, Ramaekers JG (2006) MDMA and alcohol effects, combined and alone, on objective and subjective measures of actual driving performance and psychomotor function. Psychopharmacology 187:467–475

    Article  CAS  PubMed  Google Scholar 

  • Kuypers KP, Wingen M, Samyn N, Limbert N, Ramaekers JG (2007) Acute effects of nocturnal doses of MDMA on measures of impulsivity and psychomotor performance throughout the night. Psychopharmacology (Berl) 192(1):111–119

    Article  CAS  Google Scholar 

  • Lamers CT, Ramaekers JG, Muntjewerff ND, Sikkema KL, Samyn N, Read NL, Brookhuis KA, Riedel WJ (2003) Dissociable effects of a single dose of ecstasy (MDMA) on psychomotor skills and attentional performance. J Psychopharmacol 17(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • Lansbergen MM, Dumont GJ, van Gerven JM, Buitelaar JK, Verkes RJ (2011) Acute effects of MDMA (3,4-methylenedioxymethamphetamine) on EEG oscillations: alone and in combination with ethanol or THC (delta-9-tetrahydrocannabinol). Psychopharmacology (Berl) 213:745–756

    Article  CAS  Google Scholar 

  • Lukas SE, Mendelson JH, Kouri E, Bolduc M, Amass L (1990) Ethanol-induced alterations in EEG alpha activity and apparent source of the auditory P300 evoked response potential. Alcohol 7(5):471–477

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuis S, Yeung N, van den Wildenberg W, Ridderinkhof KR (2003) Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn Affect Behav Neurosci 3:17–26

  • Olvet DM, Hajcak G (2009) The stability of error-related brain activity with increasing trials. Psychophysiology 46(5):957–961

    Article  PubMed  Google Scholar 

  • Pailing PE, Segalowitz SJ (2004) The effects of uncertainty in error monitoring on associated ERPs. Brain Cogn 56:215–233

    Article  PubMed  Google Scholar 

  • Patrick CJ, Bernat EM, Malone SM, Iacono WG, Krueger RF, McGue M (2006) P300 amplitude as an indicator of externalizing in adolescent males. Psychophysiology 43(1):84–92

    Article  PubMed Central  PubMed  Google Scholar 

  • Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41(2):103–146

    Article  CAS  PubMed  Google Scholar 

  • Rabbitt PM (1966) Errors and error correction in choice–response tasks. J Exp Psychol 71(2):264–272

    Article  CAS  PubMed  Google Scholar 

  • Ramaekers JG, Kuypers KPC (2006) Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on behavioral measures of impulsivity: alone and in combination with alcohol. Neuropsychopharmacology 31:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Ridderinkhof KR, De VY, Bramlage A, Spaan M, Elton M, Snel J, Band GP (2002) Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science 298:2209–2211

    Article  CAS  PubMed  Google Scholar 

  • Rohrbaugh JW, Stapleton JM, Parasuraman R, Zubovic EA, Frowein HW, Varner JL, Adinoff B, Lane EA, Eckardt MJ, Linnoila M (1987) Dose-related effects of ethanol on visual sustained attention and event-related potentials. Alcohol 4(4):293–300

    Article  CAS  PubMed  Google Scholar 

  • Simons RF (2010) The way of our errors: theme and variations. Psychophysiology 47(1):1--14

  • Spronk D, Dumont GJ, Verkes RJ, de Bruijn ERA (2011) Acute effects of delta-9-tetrahydrocannabinol on performance monitoring in healthy volunteers. Front Behav Neurosci 5:59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stough C, King R, Papafotiou K, Swann P, Ogden E, Wesnes K, Downey LA (2012) The acute effects of 3,4-methylenedioxymethamphetamine and d-methamphetamine on human cognitive functioning. Psychopharmacology (Berl) 220(4):799–807

    Article  CAS  Google Scholar 

  • Swick D, Turken U (2011) Errors can be dissociated from conflict: implications for theories of performance monitoring. In: Ullsperger M, Falkenstein M (eds) Errors, conflicts, and the brain. Current opinions on performance monitoring. MPI of Cognitive Neuroscience, Leipzig, pp 195–204

    Google Scholar 

  • Tieges Z, Richard RK, Snel J, Kok A (2004) Caffeine strengthens action monitoring: evidence from the error-related negativity. Brain Res Cogn Brain Res 21:87–93

    Article  CAS  PubMed  Google Scholar 

  • Urban NB, Girgis RR, Talbot PS, Kegeles LS, Xu X, Frankle WG, Hart CL, Slifstein M, Abi-Dargham A, Laruelle M (2012) Sustained recreational use of ecstasy is associated with altered pre and postsynaptic markers of serotonin transmission in neocortical areas: a PET study with [(1)(1)C]DASB and [(1)(1)C]MDL 100907. Neuropsychopharmacology 37:1465–1473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uys JD, Niesink RJ (2005) Pharmacological aspects of the combined use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and gamma-hydroxybutyric acid (GHB): a review of the literature. Drug Alcohol Rev 24:359–368

    Article  PubMed  Google Scholar 

  • Verheyden SL, Henry JA, Curran HV (2003) Acute, sub-acute and long-term subjective consequences of ‘ecstasy’ (MDMA) consumption in 430 regular users. Hum Psychopharmacol 18(7):507–517

    Article  CAS  PubMed  Google Scholar 

  • Vidal F, Hasbroucq T, Grapperon J, Bonnet M (2000) Is the ‘error negativity’ specific to errors? Biol Psychol 51(2–3):109–128

    Article  CAS  PubMed  Google Scholar 

  • Winstock AR, Griffiths P, Stewart D (2001) Drugs and the dance music scene: a survey of current drug use patterns among a sample of dance music enthusiasts in the UK. Drug Alcohol Depend 64:9–17

    Article  CAS  PubMed  Google Scholar 

  • Wu LT, Schlenger WE, Galvin DM (2006) Concurrent use of methamphetamine, MDMA, LSD, ketamine, GHB, and flunitrazepam among American youths. Drug Alcohol Depend 84:102–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeung N, Cohen JD (2006) The impact of cognitive deficits on conflict monitoring. Psych Sci 17(2):164–171

    Article  Google Scholar 

  • Yeung N, Botvinick MM, Cohen JD (2004) The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev 111(4):931–959

    Article  PubMed  Google Scholar 

  • Yordanova J, Falkenstein M, Hohnsbein J, Kolev V (2004) Parallel systems of error processing in the brain. Neuroimage 22(2):590–602

    Article  PubMed  Google Scholar 

  • Zirnheld PJ, Carroll CA, Kieffaber PD, O’Donnell BF, Shekhar A, Hetrick WP (2004) Haloperidol impairs learning and error-related negativity in humans. J Cogn Neurosci 16:1098–1112

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jan Leijtens for his assistance during the experiments.

Funding

This study was supported by a grant received from ZonMW (31000062), the Netherlands and complies with current laws. EdB is supported by the Netherlands Organization for Scientific Research (NWO), VIDI grant no. 452-12-005. The funders had no role in study design, data collection and analyses, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Spronk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spronk, D.B., Dumont, G.J.H., Verkes, R.J. et al. The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers. Psychopharmacology 231, 2877–2888 (2014). https://doi.org/10.1007/s00213-014-3456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3456-y

Keywords

Navigation