Skip to main content

Advertisement

Log in

The inositol monophosphatase inhibitor L-690,330 affects pilocarpine-behavior and the forced swim test

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Lithium has been a standard pharmacological treatment for bipolar disorder over the last 60 years; however, the molecular targets through which lithium exerts its therapeutic effects are still not defined. Attenuation of the phosphatidylinositol signal transduction pathway as a consequence of inhibition of inositol monophosphatase (IMPase) has been proposed as one of the possible mechanisms for lithium-induced mood stabilization.

Objectives

The objective was to study the behavioral effect of the specific competitive IMPase inhibitor L-690,330 in mice in the lithium-sensitive pilocarpine-induced seizures paradigm and the forced swim test (FST).

Methods

The inhibitor was administered intracerebroventricularly in liposomes.

Results

L-690,330 increased the sensitivity to subconvulsive doses of pilocarpine and decreased immobility time in the FST.

Conclusions

It is possible that the behavioral effects of lithium in the pilocarpine-induced seizures and in the FST are mediated through the inhibition of IMPase, but reversal of the inhibitor’s effect with intracerebroventricular inositol would be an important further step in proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agam G, Kofman O, Shapiro J (1994) Icv inositol does not reverse seizures elicited by an inositol monophosphatase inhibitor K-76COONa and pilocarpine. Eur Neuropsychopharmacol 4:424–425

    Article  CAS  Google Scholar 

  • Akritas MG (1999) The rank transform method in some two-factor designs. J Am Stat Assoc 85:73–78

    Article  Google Scholar 

  • Atack JR, Cook SM, Watt AP, Fletcher SR, Ragan CI (1993) In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. J Neurochem 60:652–8

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Prior AM, Fletcher SR, Quirk K, McKernan R, Ragan CI (1994) Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers. J Pharmacol Exp Ther 270:70–6

    PubMed  CAS  Google Scholar 

  • Belmaker RH (2004) Bipolar disorder. N Engl J Med 351:476–86

    Article  PubMed  CAS  Google Scholar 

  • Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68

    Article  PubMed  CAS  Google Scholar 

  • Belmaker RH, Bersudsky Y (2007) Lithium-pilocarpine seizures as a model for lithium action in mania. Neurosci Biobehav Rev 31:843–9

    Article  PubMed  CAS  Google Scholar 

  • Belmaker RH, Agam G, van Calker D, Richards MH, Kofman O (1998) Behavioral reversal of lithium effects by four inositol isomers correlates perfectly with biochemical effects on the PI cycle: depletion by chronic lithium of brain inositol is specific to hypothalamus, and inositol levels may be abnormal in postmortem brain from bipolar patients. Neuropsychopharmacology 19:220–32

    Article  PubMed  CAS  Google Scholar 

  • Benjamins JA, Agranoff BW (1969) Distribution and properties of CDP-diglyceride: inositol transferase from brain. J Neurochem 16:513–27

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59:411–9

    Article  PubMed  CAS  Google Scholar 

  • Bersudsky Y, Kaplan Z, Shapiro Y, Agam G, Kofman O, Belmaker RH (1994) Behavioral evidence for the existence of two pools of cellular inositol. Eur Neuropsychopharmacol 4:463–7

    Article  PubMed  CAS  Google Scholar 

  • Bersudsky Y, Shaldubina A, Belmaker RH (2007) Lithium's effect in forced-swim test is blood level dependent but not dependent on weight loss. Behav Pharmacol 18:77–80

    Article  PubMed  CAS  Google Scholar 

  • Buccafusca R, Venditti CP, Kenyon LC, Johanson RA, Van Bockstaele E, Ren J, Pagliardini S, Minarcik J, Golden JA, Coady MJ, Greer JJ, Berry GT (2008) Characterization of the null murine sodium/myo-inositol cotransporter 1 (Smit1 or Slc5a3) phenotype: myo-inositol rescue is independent of expression of its cognate mitochondrial ribosomal protein subunit 6 (Mrps6) gene and of phosphatidylinositol levels in neonatal brain. Mol Genet Metab 95:81–95

    Article  PubMed  CAS  Google Scholar 

  • Clifford DB, Olney JW, Maniotis A, Collins RC, Zorumski CF (1987) The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience 23:953–68

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835:18–26

    Article  PubMed  CAS  Google Scholar 

  • Crossley NA, Bauer M (2007) Acceleration and augmentation of antidepressants with lithium for depressive disorders: two meta-analyses of randomized, placebo-controlled trials. J Clin Psychiatry 68:935–40

    Article  PubMed  CAS  Google Scholar 

  • Dixon JF, Hokin LE (1994) Lithium stimulates accumulation of second-messenger inositol 1,4,5-trisphosphate and other inositol phosphates in mouse pancreatic minilobules without inositol supplementation. Biochem J 304(Pt 1):251–8

    PubMed  CAS  Google Scholar 

  • Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211:67–77

    Article  PubMed  CAS  Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255:10896–901

    PubMed  CAS  Google Scholar 

  • Honchar MP, Olney JW, Sherman WR (1983) Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220:323–5

    Article  PubMed  CAS  Google Scholar 

  • Kofman O, Belmaker RH (1993) Ziskind-Somerfeld Research Award 1993. Biochemical, behavioral, and clinical studies of the role of inositol in lithium treatment and depression. Biol Psychiatry 34:839–52

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Dixon JF, Reichman M, Moummi C, Los G, Hokin LE (1992) Li+ increases accumulation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in cholinergically stimulated brain cortex slices in guinea pig, mouse and rat. The increases require inositol supplementation in mouse and rat but not in guinea pig. Biochem J 282(Pt 2):377–85

    PubMed  CAS  Google Scholar 

  • O'Brien WT, Harper AD, Jove F, Woodgett JR, Maretto S, Piccolo S, Klein PS (2004) Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci 24:6791–8

    Article  PubMed  Google Scholar 

  • Patel S, Meldrum BS, Fine A (1988) Susceptibility to pilocarpine-induced seizures in rats increases with age. Behav Brain Res 31:165–7

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–36

    PubMed  CAS  Google Scholar 

  • Toker L, Kara N, Hadas I, Einat H, Bersudsky Y, Belmaker RH, Agam G (in preparation) Acute icv inositol does not reverse the effect of chronic lithium treatment in the forced-swim test

  • Tricklebank MD, Singh L, Jackson A, Oles RJ (1991) Evidence that a proconvulsant action of lithium is mediated by inhibition of myo-inositol phosphatase in mouse brain. Brain Res 558:145–8

    Article  PubMed  CAS  Google Scholar 

  • Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–35

    Article  PubMed  CAS  Google Scholar 

  • Whitworth P, Heal DJ, Kendall DA (1990) The effects of acute and chronic lithium treatment on pilocarpine-stimulated phosphoinositide hydrolysis in mouse brain in vivo. Br J Pharmacol 101:39–44

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors have no conflicting interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galila Agam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shtein, L., Toker, L., Bersudsky, Y. et al. The inositol monophosphatase inhibitor L-690,330 affects pilocarpine-behavior and the forced swim test. Psychopharmacology 227, 503–508 (2013). https://doi.org/10.1007/s00213-013-2969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-2969-0

Keywords

Navigation