Skip to main content
Log in

Increased drinking after intra-striatal injection of the dopamine D2/D3 receptor agonist quinpirole in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dopamine D2 receptor hyperactivity has been implicated in the development of psychogenic polydipsia in schizophrenic patients. Repeated treatment with dopamine agonists, including the D2/D3 agonist quinpirole, has been shown to induce hyperdipsia in a number of animal models. Despite these observations, obtained with systemic administrations, little attempt has been made to investigate where in the brain dopamine agonists act to induce hyperdipsia.

Objective

The present study investigates the effects of repeated intra-caudate infusions of quinpirole on the intake of water by rats tested under free-drinking conditions.

Materials and methods

Rats with bilateral cannulae placed into the anterior, central or posterior caudate received quinpirole microinfusions (1 μg/side) for five consecutive days in their home cage. Water intake was measured 15 and 60 min after the treatment.

Results

When injected in the central caudate, quinpirole increased water intake, and this effect progressively increased over sessions, indicating the development of sensitization. When injected in the posterior caudate, the dipsogenic effect of quinpirole was less intense and did not undergo sensitization. The infusion of quinpirole in the anterior caudate did not affect drinking.

Conclusion

The present study shows that caudate D2/3 receptors play an important role in the development of quinpirole-induced hyperdipsia, an animal model of psychotic polydipsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amalric M, Koob GF (1987) Depletion of dopamine in the caudate nucleus but not in nucleus accumbens impairs reaction-time performance in rats. J Neurosci 7:2129–2134

    PubMed  CAS  Google Scholar 

  • Amato D, Milella MS, Badiani A, Nencini P (2006) Compulsive-like effects of repeated administration of quinpirole on drinking behavior in rats. Behav Brain Res 172:1–13

    Article  PubMed  CAS  Google Scholar 

  • Amato D, Stasi MA, Borsini F, Nencini P (2008) Haloperidol both prevents and reverses quinpirole-induced nonregulatory water intake, a putative animal model of psychogenic polydipsia. Psychopharmacology (Berl) 200:157–165

    Article  CAS  Google Scholar 

  • Badiani A, Vaccaro R, Burdino R, Casini A, Valeri P, Renda TG, Nencini P (2002) Dissociation in the effects of the D2/D3 dopaminergic agonist quinpirole on drinking and on vasopressin levels in the rat. Neurosci Lett 325:79–82

    Article  PubMed  CAS  Google Scholar 

  • Badiani A, Stewart J (1999) Long-lasting sensitization to the accelerating effects of amphetamine on the speed of an internal clock. Behav Brain Res 100:217–223

    Article  PubMed  CAS  Google Scholar 

  • Brown LL (1992) Somatotopic organization in rat striatum: evidence for a combinational map. Proc Natl Acad Sci USA 89:7403–7407

    Article  PubMed  CAS  Google Scholar 

  • Brown VJ, Robbins TW (1991) Simple and choice reaction time performance following unilateral striatal dopamine depletion in the rat. Impaired motor readiness but preserved response preparation. Brain 114:513–525

    Article  PubMed  Google Scholar 

  • Canales JJ, Iversen SD (1998) Behavioural topography in the striatum: differential effects of quinpirole and D-amphetamine microinjections. Eur J Pharmacol 362:111–119

    Article  PubMed  CAS  Google Scholar 

  • Castaneda E, Becker JB, Robinson TE (1988) The long-term effects of repeated amphetamine treatment in vivo on amphetamine, KCl and electrical stimulation evoked striatal dopamine release in vitro. Life Sci 42:2447–2456

    Article  PubMed  CAS  Google Scholar 

  • Cho J, West MO (1997) Distributions of single neurons related to body parts in the lateral striatum of the rat. Brain Res 756:241–246

    Article  PubMed  CAS  Google Scholar 

  • Cioli I, Caricati A, Nencini P (2000) Quinpirole- and amphetamine-induced hyperdipsia: influence of fluid palatability and behavioral cost. Behav Brain Res 109:9–18

    Article  PubMed  CAS  Google Scholar 

  • De Carolis L, Schepisi C, Milella MS, Nencini P (2011) Clomipramine, but not haloperidol or aripiprazole, inhibits quinpirole-induced water contrafreeloading, a putative animal model of compulsive behavior. Psychopharmacology (Berl) 218:749–759

    Article  Google Scholar 

  • de Leon J, Tracy J, McCann E, McGrory A (2002) Polydipsia and schizophrenia in a psychiatric hospital: a replication study. Schizophr Res 57:293–301

    Article  PubMed  Google Scholar 

  • Delfs JM, Kelley AE (1990) The role of D1 and D2 dopamine receptors in oral stereotypy induced by dopaminergic stimulation of the ventrolateral striatum. Neuroscience 39:59–67

    Article  PubMed  CAS  Google Scholar 

  • Divac I, Markowitsch HJ, Pritzel M (1978) Behavioral and anatomical consequences of small intrastriatal injections of kainic acid in the rat. Brain Res 151:523–532

    Article  PubMed  CAS  Google Scholar 

  • Dourish DT, Jones RS (1982) Dopamine agonist-induced restoration of drinking in response to hypertonic saline in adipsic dopamine denervated rats. Brain Res Bull 8:375–379

    Article  PubMed  CAS  Google Scholar 

  • Dunnett SB, Iversen SD (1981) Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behav Brain Res 2:189–209

    Article  PubMed  CAS  Google Scholar 

  • Falk JL (1966) The motivational properties of schedule-induced polydipsia. J Exp Anal Behav 9:19–25

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT, Setler PE (1975) The relative importance of central nervous catecholaminergic and cholinergic mechanisms in drinking in response to antiotensin and other thirst stimuli. J Physiol 250:613–631

    PubMed  CAS  Google Scholar 

  • Flemming AS (1960) Amphetamine drugs. Public Health Rep 75:49–50

    PubMed  CAS  Google Scholar 

  • Fraioli S, Cioli I, Nencini P (1997) Amphetamine reinstates polydipsia induced by chronic exposure to quinpirole, a dopaminergic D2 agonist, in rats. Behav Brain Res 89:199–215

    Article  PubMed  CAS  Google Scholar 

  • Goldman MB, Robertson GL, Luchins DJ, Hedeker D, Pandey GN (1997) Psychotic exacerbations and enhanced vasopressin secretion in schizophrenic patients with hyponatremia and polydipsia. Arch Gen Psychiatry 54:443–449

    Article  PubMed  CAS  Google Scholar 

  • Goldman MB, Torres IJ, Keedy S, Marlow-O’Connor M, Beenken B, Pilla R (2007) Reduced anterior hippocampal formation volume in hyponatremic schizophrenic patients. Hippocampus 17:554–562

    Article  PubMed  CAS  Google Scholar 

  • Groves PM (1983) A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res 286:109–132

    PubMed  CAS  Google Scholar 

  • Illowsky BP, Kirch DG (1988) Polydipsia and hyponatremia in psychiatric patients. Am J Psychiatry 145:675–683

    PubMed  CAS  Google Scholar 

  • Kelley AE, Gauthier AM, Lang CG (1989) Amphetamine microinjections into distinct striatal subregions cause dissociable effects on motor and ingestive behavior. Behav Brain Res 35:27–39

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Lang CG, Gauthier AM (1988) Induction of oral stereotypy following amphetamine microinjection into a discrete subregion of the striatum. Psychopharmacology (Berl) 95:556–559

    Article  CAS  Google Scholar 

  • Kurylo DD (2004) Effects of quinpirole on operant conditioning: perseveration of behavioral components. Behav Brain Res 155:117–124

    Article  PubMed  CAS  Google Scholar 

  • Luchins DJ (1990) A possible role of hippocampal dysfunction in schizophrenic symptomatology. Biol Psychiatry 28:87–91

    Article  PubMed  CAS  Google Scholar 

  • Marshall JF, Ungerstedt U (1976) Apomorphine-induced restoration of drinking to thirst challenges in 6-hydroxydopamine-treated rats. Physiol Behav 17:817–822

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto C, Shinkai T, De Luca V, Hwang R, Hori H, Lanktree M, Ohmori O, Kennedy JL, Nakamura J (2005) Association between three functional polymorphisms of the dopamine D2 receptor gene and polydipsia in schizophrenia. Int J Neuropsychopharmacol 28:245–253

    Article  Google Scholar 

  • McGeorge AJ, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537

    Article  PubMed  CAS  Google Scholar 

  • Milella MS, Amato D, Badiani A, Nencini P (2008) The influence of cost manipulation on water contrafreeloading induced by repeated exposure to quinpirole in the rat. Psychopharmacology (Berl) 197:379–390

    Article  CAS  Google Scholar 

  • Nencini P (1988) The role of opiate mechanisms in the development of tolerance to the anorectic effects of amphetamines. Pharmacol Biochem Behav 30:755–764

    Article  PubMed  CAS  Google Scholar 

  • Paolone G, Conversi D, Caprioli D, Bianco PD, Nencini P, Cabib S, Badiani A (2007) Modulatory effect of environmental context and drug history on heroin-induced psychomotor activity and fos protein expression in the rat brain. Neuropsychopharmacology 32:2611–2623

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotactic coordinates. Academic, New York

    Google Scholar 

  • Pisa M (1988) Regional specialization of motor functions in the rat striatum: implications for the treatment of parkinsonism. Prog Neuropsychopharmacol Biol Psychiatry 12:217–224

    Article  PubMed  CAS  Google Scholar 

  • Pisa M, Cyr J (1990) Regionally selective roles of the rat’s striatum in modality-specific discrimination learning and forelimb reaching. Behav Brain Res 37:281–292

    Article  PubMed  CAS  Google Scholar 

  • Pisa M, Schranz JA (1988) Dissociable motor roles of the rat’s striatum conform to a somatotopic model. Behav Neurosci 102:429–440

    Article  PubMed  CAS  Google Scholar 

  • Raskind MA, Orenstein H, Christopher TG (1975) Acute psychosis, increased water ingestion, and inappropriate antidiuretic hormone secretion. Am J Psychiatry 132:907–910

    PubMed  CAS  Google Scholar 

  • Rendell M, McGrane D, Cuesta M (1978) Fatal compulsive water drinking. JAMA 240:2557–2559

    Article  PubMed  CAS  Google Scholar 

  • Rolls BJ, Rolls ET (1981) The control of drinking. Br Med Bull 37:127–130

    PubMed  CAS  Google Scholar 

  • Rowland N, Antelman SM, Kocan D (1981) Elevated water intake in rats treated chronically with amphetamine: drinking in excess of need? Appetite 2:51–66

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Mahan K, Rogers S (1993) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav 44:605–610

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci 1003:36–52

    Article  PubMed  CAS  Google Scholar 

  • Shen MW, Sata LS (1983) Hypothalamic dopamine receptor supersensitivity? A pilot study of self-induced water intoxication. Psychiatr J Univ Ott 8:154–158

    PubMed  CAS  Google Scholar 

  • Szechtman H, Eckert MJ, Tse WS, Boersma JT, Bonura CA, McClelland JZ, Culver KE, Eilam D (2001) Compulsive checking behavior of quinpirole-sensitized rats as an animal model of obsessive-compulsive disorder (OCD): form and control. BMC Neurosci 2:4

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:95–122

    PubMed  CAS  Google Scholar 

  • Verghese C, De Leon J, Simpson GM (1994) Polydipsia, tardive dyskinesia, and dopamine supersensitivity. Am J Psychiatry 151:1716–1717

    PubMed  CAS  Google Scholar 

  • Whishaw IQ, Kolb B (1983) “Stick out your tongue”: tongue protrusion in neocortex and hypothalamic damaged rats. Physiol Behav 30:471–480

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Amato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amato, D., Müller, C.P. & Badiani, A. Increased drinking after intra-striatal injection of the dopamine D2/D3 receptor agonist quinpirole in the rat. Psychopharmacology 223, 457–463 (2012). https://doi.org/10.1007/s00213-012-2735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2735-8

Keywords

Navigation