Skip to main content

Advertisement

Log in

Effects of protein kinase A inhibitor and activator on rewarding effects of SKF-82958 microinjected into nucleus accumbens shell of ad libitum fed and food-restricted rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Previous studies indicate that the rewarding effect of D-1 dopamine receptor stimulation in nucleus accumbens (NAc) shell is greater in food-restricted (FR) than in ad libitum fed (AL) rats. The D-1 receptor is positively coupled to adenylyl cyclase and activates protein kinase A (PKA).

Objectives

The purpose of this study was to determine whether PKA is involved in the rewarding effect of D-1 receptor stimulation and, if so, whether it is involved in the enhanced response of FR rats.

Materials and methods

Rats were stereotaxically implanted with microinjection cannulae in NAc shell and a stimulating electrode in lateral hypothalamus. The rewarding effects of SKF-82958 (1.5 or 3.0 μg, bilaterally) in the presence and absence of PKA inhibitor, Rp-cAMPS (8.9 μg), and PKA activator, Sp-cAMPS (8.9 μg), were assessed using the curve-shift method of intracranial self-stimulation (ICSS). Basal NAc levels of DARPP-32 phosphorylated on Thr34 and Thr75 were measured.

Results

Rp-cAMPS increased the rewarding effect of SKF-82958 in AL but not FR rats, doubling the ICSS threshold-lowering effect of the 3.0-μg dose. Sp-cAMPS decreased the rewarding effect of SKF-82958 in FR but not AL rats. Levels of phospho-DARPP-32 (Thr75), which inhibits PKA, were higher in FR than AL rats.

Conclusions

Results indicate that inhibition of PKA enhances the unconditioned rewarding effect of D-1 receptor stimulation and that decreased PKA may be involved in the effect of FR on drug reward. Evidence for involvement of D-2 receptor-expressing neurons in the enhancing effect of PKA inhibition is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baladi MG, France CP (2009) High fat diet and food restriction differentially modify the behavioral effects of quinpirole and raclopride in rats. Eur J Pharmacol 610:55–60

    Article  PubMed  CAS  Google Scholar 

  • Baldwin AE, Sadeghian K, Holahan MR, Kelley AE (2002) Appetitive instrumental learning is impaired by inhibition of cAMP-dependent protein kinase within the nucleus accumbens. Neurobiol Learn Mem 77:44–62

    Article  PubMed  CAS  Google Scholar 

  • Bateup HS, Svenningsson P, Kuroiwa M, Gong S, Nishi A, Heintz N, Greengard P (2008) Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat Neurosci 11:932–939

    Article  PubMed  CAS  Google Scholar 

  • Beninger RJ, Gerdjikov T (2004) The role of signaling molecules in reward-related incentive learning. Neurotox Res 6:91–104

    Article  PubMed  Google Scholar 

  • Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL, Yan Z, Sagawa ZK, Ouimet CC, Nairn AC, Nestler EJ, Greengard P (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410:376–380

    Article  PubMed  CAS  Google Scholar 

  • Cabeza de Vaca S, Kannan P, Pan Y, Jiang N, Sun Y, Carr KD (2007) The adenosine A2a receptor agonist, CGS-21680, blocks excessive rearing, acquisition of wheel running, and increases nucleus accumbens CREB phosphorylation in chronically food-restricted rats. Brain Res 1142:100–109

    Article  PubMed  CAS  Google Scholar 

  • Carr KD (2007) Food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav 91:459–472

    Article  PubMed  CAS  Google Scholar 

  • Carr KD, Kim G-Y, Cabeza de Vaca S (2001) Rewarding and locomotor-activating effects of direct dopamine receptor agonists are augmented by chronic food restriction in rats. Psychopharmacol 154:420–428

    Article  CAS  Google Scholar 

  • Carr KD, Tsimberg Y, Berman Y, Yamamoto N (2003) Evidence of increased dopamine receptor signaling in food-restricted rats. Neurosci 119:1157–1167

    Article  CAS  Google Scholar 

  • Carr KD, Cabeza de Vaca S, Sun Y, Chau LS (2009) Reward-potentiating effects of D-1 dopamine receptor agonist and AMPAR GluR1 antagonist in nucleus accumbens shell and their modulation by food restriction. Psychopharmacol 202:731–743

    Article  CAS  Google Scholar 

  • Carr KD, Chau LS, Cabeza de Vaca S, Gustafson K, Stouffer M, Tukey D, Restituito S, Ziff E (2010) AMPA receptor subunit GluR1 downstream of D-1 dopamine receptor stimulation in nucleus accumbens shell mediates increased drug reward magnitude in food-restricted rats. Neurosci 165:1074–1086

    Article  CAS  Google Scholar 

  • Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 90:9576–9580

    Article  PubMed  CAS  Google Scholar 

  • Cochrane C, Malcolm R, Brewerton T (1998) The role of weight control as a motivation for cocaine abuse. Addict Behav 23:201–207

    Article  PubMed  CAS  Google Scholar 

  • Collins GT, Calinski DM, Newman AH, Grundt P, Woods JH (2008) Food restriction alters N′-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride (pramipexole)-induced yawning, hypothermia, and locomotor activity in rats: evidence for sensitization of dopamine D2 receptor-mediated effects. J Pharmacol Exp Ther 325:691–697

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Laane K, Theobald DEH, Armstrong HC, Corlett PR, Chudasama Y, Robbins TW (2005) Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc Natl Acad Sci 102:6189–6194

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Cabiale Z, Hurd Y, Guidolin D, Finnman U-B, Zoli M, Agnati LF, Vanderhaeghen J-J, Fuxe K, Ferre S (2001) Adenosine A2A agonist CGS 21680 decreases the affinity of dopamine D2 receptors for dopamine in human striatum. Neuroreport 12:1831–1834

    Article  PubMed  CAS  Google Scholar 

  • Dunah AW, Sirianni AC, Fienberg AA, Bastia E, Schwarzschild MA, Standaert DG (2004) Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 65:121–129

    Article  PubMed  CAS  Google Scholar 

  • Fernandez E, Schiappa R, Girault J-A, Le Novere N (2006) DARPP-32 is a robust integrator of dopamine and glutamate signals. PloS Comp Biol 2:1619–1633

    Article  CAS  Google Scholar 

  • Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C (2003) Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 278:20196–20202

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF, Jacobsen K, Hillion J, Canals M, Torvinen M, Tinner-Staines B, Staines W, Rosin D, Terasmaa A, Popoli P, Leo G, Vergoni V, Lluis C, Ciruela F, Franco R, Ferre S (2003) Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson's disease. Neurol 61:S19–S23

    Article  CAS  Google Scholar 

  • Gerdjikov TV, Giles AC, Swain SN, Beninger RJ (2007) Nucleus accumbens PKA inhibition blocks acquisition but enhances expression of amphetamine-produced conditioned activity in rats. Psychopharmacol 190:65–72

    Article  CAS  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Ann Rev Neurosci 34:441–466

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann NY Acad Sci 877:49–63

    Article  PubMed  CAS  Google Scholar 

  • Haberny SL, Carr KD (2005a) Comparison of basal and D-1 dopamine receptor agonist-stimulated neuropeptide gene expression in caudate-putamen and nucleus accumbens of ad libitum fed and food-restricted rats. Molec Brain Res 141:121–127

    Article  PubMed  CAS  Google Scholar 

  • Haberny SL, Carr KD (2005b) Food restriction increases NMDA receptor-mediated CaMK II and NMDA receptor/ERK 1/2-mediated CREB phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats. Neurosci 132:1035–1043

    Article  CAS  Google Scholar 

  • Haberny S, Berman Y, Meller E, Carr KD (2004) Chronic food restriction increases D-1 dopamine receptor agonist-induced ERK1/2 MAP kinase and CREB phosphorylation in caudate-putamen and nucleus accumbens. Neurosci 125:289–298

    Article  CAS  Google Scholar 

  • Hakansson K, Galdi S, Hendrick J, Snyder G, Greengard P, Fisone G (2006) Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 96:482–488

    Article  PubMed  Google Scholar 

  • Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW (2006) Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 26:4690–4700

    Article  PubMed  CAS  Google Scholar 

  • Hillion J, Canals M, Torvinen M, Cadado V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferre S, Fuxe K (2002) Coaggregation, cointernalization and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277:18091–18097

    Article  PubMed  CAS  Google Scholar 

  • Hsu CW, Chen CY, Wang C-S, Chiu TH (2009) Caffeine and a selective adenosine A2A receptor antagonist induce reward and sensitization behavior associated with increased phospho-Thr75-DARPP-32 in mice. Psychopharmacol 204:313–325

    Article  CAS  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Ann Rev Neurosci 29:565–598

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Glazier BS, Murphy JM, McBride WJ (1997) Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 17:8580–8587

    PubMed  CAS  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    Article  PubMed  Google Scholar 

  • Kheirbek MA, Beeler JA, Ishikawa Y, Zhuang X (2008) A cAMP pathway underlying reward prediction in associative learning. J Neurosci 28:11401–11408

    Article  PubMed  CAS  Google Scholar 

  • Klesges RC, Elliott VE, Robinson LA (1997) Chronic dieting and the belief that smoking controls body weight in a biracial, population-based adolescent sample. Tob Control 6:89–94

    Article  PubMed  CAS  Google Scholar 

  • LaHoste GJ, Henry BL, Marshall JF (2000) Dopamine D1 receptors synergize with D2, but not D3 or D4, receptors in the striatum without the involvement of action potentials. J Neurosci 20:6666–6671

    PubMed  CAS  Google Scholar 

  • Lee AM, Messing RO (2008) Protein kinases and addiction. Ann NY Acad Sci 1141:22–57

    Article  PubMed  CAS  Google Scholar 

  • Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111:219–230

    Article  PubMed  CAS  Google Scholar 

  • Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385–390

    Article  PubMed  CAS  Google Scholar 

  • Lynch WH, Taylor JR (2005) Persistent changes in motivation to self-administer cocaine following modulation of cyclic AMP-dependent protein kinase A (PKA) activity in the nucleus accumbens. Eur J Neurosci 22:1214–1220

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  PubMed  CAS  Google Scholar 

  • Mannoury La Cour C, Vidal S, Pasteau V, Cussac D, Millan MJ (2007) Dopamine D1 receptor coupling to Gs/olf and Gq in rat striatum and cortex: a scintillation proximity assay (SPA)/antibody-capture characterization of benzazepine agonists. Neuropharmacol 52:1003–1014

    Article  CAS  Google Scholar 

  • Miliaressis E, Rompre PP, Laviolette P, Philippe L, Coulombe D (1986) The curve-shift paradigm in self-stimulation. Physiol Behav 37:85–91

    Article  PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • O’Donnell P, Grace AA (1993) Physiological and morphological properties of accumbens core and shell neurons recorded in vitro. Synapse 13:135–160

    Article  PubMed  Google Scholar 

  • Perez MF, White FJ, Hu XT (2006) Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials. J Neurophysiol 96:2217–2228

    Article  PubMed  CAS  Google Scholar 

  • Pisetsky EM, Chao YM, Dierker LC, May AM, Striegel-Moore RH (2008) Disordered eating and substance use in high-school students: results from the Youth Risk Behavior Surveillance System. Int J Eat Disord 41:464–470

    Article  PubMed  Google Scholar 

  • Podda MV, Riccardi E, D'Ascenzo M, Azzena GB, Grassi C (2010) Dopamine D1-like receptor activation depolarizes medium spiny neurons of the mouse nucleus accumbens by inhibiting inwardly rectifying K + currents through a cAMP-dependent protein kinase A-independent mechanism. Neurosci 167:678–690

    Article  CAS  Google Scholar 

  • Root TL, Pinheiro AP, Thornton L, Strober M, Fernandez-Aranda F, Brandt H, Crawford S, Fichter MM, Halmi KA, Johnson C, Kaplan AS, Klump KL, La Via M, Mitchell J, Woodside DB, Rotondo A, Berrettini WH, Kaye WH, Bulik CM (2010) Substance use disorders in women with anorexia nervosa. Int J Eat Disord 43:14–21

    PubMed  Google Scholar 

  • Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 18:1848–1859

    PubMed  CAS  Google Scholar 

  • Shuen JA, Chen M, Gloss B, Calakos N (2008) Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci 28:2681–2685

    Article  PubMed  CAS  Google Scholar 

  • Snyder GL, Allen PB, Fienberg AA, Valle CG, Huganir RL, Nairn AC, Greengard P (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 20:4480–4488

    PubMed  CAS  Google Scholar 

  • Stamp JA, Mashoodh R, van Kampen JM, Robertson HA (2008) Food restriction enhances peak corticosterone levels, cocaine-induced locomotor activity, and DeltaFosB expression in the nucleus accumbens of the rat. Brain Res 1204:94–101

    Article  PubMed  CAS  Google Scholar 

  • Stoof JC, Kebabian JW (1982) Independent in vitro regulation by the D-2 dopamine receptor of dopamine-stimulated efflux of cyclic AMP and K+-stimulated release of acetylcholine from rat neostriatum. Brain Res 250:263–270

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zhao Y, Wolf ME (2005) Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J Neurosci 25:7342–7351

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Bargas J, Hemmings HC Jr, Nairn AC, Greengard P (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Lindskog M, Rognoni F, Fredholm BB, Greengard P, Fisone G (1998) Activation of adenosine A2A and Dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons. Neurosci 84:223–228

    Article  CAS  Google Scholar 

  • Svenningsson P, Nishi A, Fisone G, Girault J-A, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger RZ, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548:100–110

    Article  PubMed  CAS  Google Scholar 

  • Unterwald EM, Fillmore J, Kreek MJ (1996) Chronic repeated cocaine administration increases dopamine D1 receptor-mediated signal transduction. Eur J Pharmacol 318:31–35

    Article  PubMed  CAS  Google Scholar 

  • Wachtel SR, Hu XT, Galloway MP, White FJ (1989) D1 dopamine receptor stimulation enables the postsynaptic, but not autoreceptor, effects of D2 dopamine agonists in nigrostriatal and mesoaccumbens dopamine systems. Synapse 4:327–346

    Article  PubMed  CAS  Google Scholar 

  • Walaas SI, Hemmings HC Jr, Greengard P, Nairn AC (2011) Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Front Neuroanat 5:1–17

    Article  Google Scholar 

  • Wang JQ, Liu X, Zhang G, Parelkar NK, Arora A, Haines M, Fibuch EE, Mao L (2006) Phosphorylation of glutamate receptors: A potential mechanism for the regulation of receptor function and psychostimulant action. J Neurosci Res 84:1621–1629

    Article  PubMed  CAS  Google Scholar 

  • Wiederman MW, Pryor T (1996) Substance abuse and impulsive behaviors among adolescents with eating disorders. Addict Behav 21:269–272

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1996) Addictive drugs and brain stimulation reward. Ann Rev Neurosci 19:319–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by DA003956 and DA007254 from NIDA/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Carr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vaca, S.C., Peng, XX., Concors, S. et al. Effects of protein kinase A inhibitor and activator on rewarding effects of SKF-82958 microinjected into nucleus accumbens shell of ad libitum fed and food-restricted rats. Psychopharmacology 221, 589–599 (2012). https://doi.org/10.1007/s00213-011-2602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2602-z

Keywords

Navigation