Skip to main content

Advertisement

Log in

What and when to “want”? Amygdala-based focusing of incentive salience upon sugar and sex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Amygdala-related circuitry helps translate learned Pavlovian associations into appetitive and aversive motivation, especially upon subsequent encounters with cues.

Objectives

We asked whether μ-opioid stimulation via microinjections of the specific agonist d-Ala2, N-MePhe4, Gly-ol)-enkephalin (DAMGO) in central nucleus of amygdala (CeA), or the adjacent basolateral amygdala (BLA) would magnify sucrose or sex “wanting”, guided by available cues.

Materials and methods

CeA or BLA DAMGO enhancement of cue-triggered “wanting” was assessed using Pavlovian to instrumental transfer (PIT). Unconditioned food “wanting” was measured via intake, and male sexual “wanting” for an estrous female was measured in a sexual approach test. Sucrose hedonic taste “liking” was measured in a taste reactivity test.

Results

CeA (but not BLA) DAMGO increased the intensity of phasic peaks in instrumental sucrose seeking stimulated by Pavlovian cues over precue levels in PIT, while suppressing seeking at other moments. CeA DAMGO also enhanced food intake, as well as sexual approach and investigation of an estrous female by males. DAMGO “wanting” enhancements were localized to CeA, as indicated by “Fos plume”-based anatomical maps for DAMGO causation of behavioral effects. Despite increasing “wanting”, CeA DAMGO decreased the hedonic impact or “liking” for sucrose in a taste reactivity paradigm.

Conclusions

CeA μ-opioid stimulation specifically enhances incentive salience, which is dynamically guided to food or sex by available cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn S, Phillips AG (2003) Independent modulation of basal and feeding-evoked dopamine efflux in the nucleus accumbens and medial prefrontal cortex by the central and basolateral amygdalar nuclei in the rat. Neuroscience 116:295–305

    Article  PubMed  CAS  Google Scholar 

  • Alheid GF (2003) Extended amygdala and basal forebrain. Ann N Y Acad Sci 985:185–205

    Article  PubMed  CAS  Google Scholar 

  • Ambroggi F, Ishikawa A, Fields HL, Nicola SM (2008) Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59:648–661

    Article  PubMed  CAS  Google Scholar 

  • Baldo BA, Kelley AE (2007) Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacol (Berl) 191:439–459

    Article  CAS  Google Scholar 

  • Balleine B (1994) Asymmetrical interactions between thirst and hunger in Pavlovian-instrumental transfer. Q J Exp Psychol B 47:211–231

    PubMed  CAS  Google Scholar 

  • Becker JB, Arnold AP, Berkley KJ, Blaustein JD, Eckel LA, Hampson E, Herman JP, Marts S, Sadee W, Steiner M, Taylor J, Young E (2005) Strategies and methods for research on sex differences in brain and behavior. Endocrinology 146:1650–1673

    Article  PubMed  CAS  Google Scholar 

  • Berridge K (2001) Reward learning: reinforcement, incentives, and expectations. In: Medin DL (ed) Psychology of Learning and Motivation. Academic Press, pp 223–278

  • Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24:173–198

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Flynn FW, Schulkin J, Grill HJ (1984) Sodium depletion enhances salt palatability in rats. Behav Neurosci 98:652–660

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Bindra D (1978) How adaptive behavior is produced: a perceptual-motivation alternative to response reinforcement. Behav Brain Sci 1:41–91

    Article  Google Scholar 

  • Blundell P, Hall G, Killcross S (2001) Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats. J Neurosci 21:9018–9026

    PubMed  CAS  Google Scholar 

  • Chieng BC, Christie MJ, Osborne PB (2006) Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. J Comp Neurol 497:910–927

    Article  PubMed  CAS  Google Scholar 

  • Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of Pavlovian-instrumental transfer. J Neurosci 25:962–970

    Article  PubMed  CAS  Google Scholar 

  • Corbit LH, Balleine BW (2011) The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J Neurosci Off J Soc Neurosci 31:11786–11794

    Article  CAS  Google Scholar 

  • Corbit LH, Janak PH (2010) Posterior dorsomedial striatum is critical for both selective instrumental and Pavlovian reward learning. Eur J Neurosci 31:1312–1321

    Article  PubMed  Google Scholar 

  • Corbit LH, Janak PH, Balleine BW (2007) General and outcome-specific forms of Pavlovian-instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur J Neurosci 26:3141–3149

    Article  PubMed  Google Scholar 

  • Delamater AR, Holland PC (2008) The influence of CS-US interval on several different indices of learning in appetitive conditioning. J Exp Psychol Anim Behav Process 34:202–222

    Article  PubMed  Google Scholar 

  • Di Ciano P, Everitt BJ (2005) Neuropsychopharmacology of drug seeking: Insights from studies with second-order schedules of drug reinforcement. Eur J Pharmacol 526:186–198

    Article  PubMed  Google Scholar 

  • Dickinson A, Dearing MF (1979) Appetitive-aversive interactions and inhibitory processes. In: Dickinson A, Boakes R (eds) Mechanisms of learning and motivation. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 203–231

    Google Scholar 

  • Difeliceantonio AG, Berridge KC (2010) Neostriatal sites of mu opioid stimulation enhance CS motivational magnets. Society for Neuroscience, San Diego, CA

    Google Scholar 

  • Estes WK (1943) Discriminative conditioning I: a discriminative property of conditioned anticipation. J Exp Psychol 32:150–155

    Article  Google Scholar 

  • Everitt BJ, Cardinal RN, Parkinson JA, Robbins TW (2003) Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann N Y Acad Sci 985:233–250

    Article  PubMed  Google Scholar 

  • Finnegan TF, Chen SR, Pan HL (2005) Effect of the mu opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. J Pharmacol Exp Ther 312:441–448

    Article  PubMed  CAS  Google Scholar 

  • Finnegan TF, Chen SR, Pan HL (2006) Mu opioid receptor activation inhibits GABAergic inputs to basolateral amygdala neurons through Kv1.1/1.2 channels. J Neurophysiol 95:2032–2041

    Article  PubMed  CAS  Google Scholar 

  • Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PE, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469:53–57

    Article  PubMed  CAS  Google Scholar 

  • Flanagan O (2011) What is it like to be an addict? In: Poland J, Graham G (eds) Addiction and responsibility. MIT Press, Cambridge, MA

    Google Scholar 

  • Gabriel M, Burhans L, Kashef A (2003) Consideration of a unified model of amygdalar associative functions. Ann N Y Acad Sci 985:206–217

    Article  PubMed  Google Scholar 

  • Galaverna OG, Seeley RJ, Berridge KC, Grill HJ, Epstein AN, Schulkin J (1993) Lesions of the central nucleus of the amygdala. I: Effects on taste reactivity, taste aversion learning and sodium appetite. Behav Brain Res 59:11–17

    Article  PubMed  CAS  Google Scholar 

  • Gosnell BA (1988) Involvement of mu opioid receptors in the amygdala in the control of feeding. Neuropharmacology 27:319–326

    Article  PubMed  CAS  Google Scholar 

  • Grill HJ, Norgren R (1978) The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res 143:263–279

    Article  PubMed  CAS  Google Scholar 

  • Hall J, Parkinson JA, Connor TM, Dickinson A, Everitt BJ (2001) Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur J Neurosci 13:1984–1992

    Article  PubMed  CAS  Google Scholar 

  • Hatfield T, Han JS, Conley M, Gallagher M, Holland P (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J Neurosci 16:5256–5265

    PubMed  CAS  Google Scholar 

  • Hearst E, Jenkins HM (1974) Sign tracking: the stimulus-reinforcer relation and directed action. In: Society P (ed), Austin, Tx

  • Heimer L (2008) Anatomy of neuropsychiatry: the new anatomy of the basal forebrain and its implications for neuropsychiatric illness. Boston Academic Press/Elsevier, Amsterdam

    Google Scholar 

  • Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–147

    Article  PubMed  Google Scholar 

  • Holland PC (1977) Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response. J Exp Psychol Anim Behav Process 3:77–104

    Article  PubMed  CAS  Google Scholar 

  • Holland PC, Gallagher M (2003) Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. Eur J Neurosci 17:1680–1694

    Article  PubMed  Google Scholar 

  • Holland PC, Petrovich GD (2005) A neural systems analysis of the potentiation of feeding by conditioned stimuli. Physiol Behav 86:747–761

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa A, Ambroggi F, Nicola SM, Fields HL (2008) Contributions of the amygdala and medial prefrontal cortex to incentive cue responding. Neuroscience 155:573–584

    Article  PubMed  CAS  Google Scholar 

  • Jackson ED (2009) The Extended Amygdala in Appetitive Motivation for Reward: Role of the Bed Nucleus of the Stria Terminalis Psychology. University of Michigan, Ann Arbor, MI

    Google Scholar 

  • Johnson AW, Gallagher M, Holland PC (2009) The basolateral amygdala is critical to the expression of Pavlovian and instrumental outcome-specific reinforcer devaluation effects. J Neurosci 29:696–704

    Article  PubMed  CAS  Google Scholar 

  • Kang-Park MH, Kieffer BL, Roberts AJ, Roberto M, Madamba SG, Siggins GR, Moore SD (2009) Mu-opioid receptors selectively regulate basal inhibitory transmission in the central amygdala: lack of ethanol interactions. J Pharmacol Exp Ther 328:284–293

    Article  PubMed  CAS  Google Scholar 

  • Kantak KM, Black Y, Valencia E, Green-Jordan K, Eichenbaum HB (2002) Dissociable effects of lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance and reinstatement of cocaine-seeking behavior in rats. J Neurosci 22:1126–1136

    PubMed  CAS  Google Scholar 

  • Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M (2002) Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav 76:365–377

    Article  PubMed  CAS  Google Scholar 

  • Kita I, Arita H (1996) Afferent projections to the central nucleus of the amygdala, evoking depressor response, tachycardia and vocalization in rat. Neurosci Res 25:229–239

    Article  Google Scholar 

  • Konorski J (1967) Integrative activity of the brain: an interdisciplinary approach. University of Chicago Press, Chicago, Il

    Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  • Levine AS, Olszewski PK, Mullett MA, Pomonis JD, Grace MK, Kotz CM, Billington CJ (2004) Intra-amygdalar injection of DAMGO: effects on c-Fos levels in brain sites associated with feeding behavior. Brain Res 1015:9–14

    Article  PubMed  CAS  Google Scholar 

  • Mahler SV, Berridge KC (2009) Which cue to “want?” Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. J Neurosci 29:6500–6513

    Article  PubMed  CAS  Google Scholar 

  • Mahler SV, Smith KS, Berridge KC (2007) Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology 32:2267–2278

    Article  PubMed  CAS  Google Scholar 

  • Marinelli PW, Funk D, Juzytsch W, Le AD (2010) Opioid receptors in the basolateral amygdala but not dorsal hippocampus mediate context-induced alcohol seeking. Behav Brain Res 211:58–63

    Article  PubMed  CAS  Google Scholar 

  • Nocjar C, Panksepp J (2002) Chronic intermittent amphetamine pretreatment enhances future appetitive behavior for drug- and natural-reward: interaction with environmental variables. Behav Brain Res 128:189–203

    Article  PubMed  CAS  Google Scholar 

  • Norgren R (1976) Taste pathways to hypothalamus and amygdala. J Comp Neurol 166:17–30

    Article  PubMed  CAS  Google Scholar 

  • Parker KE, McCall JG, Will MJ (2010) Basolateral amygdala opioids contribute to increased high-fat intake following intra-accumbens opioid administration, but not following 24-h food deprivation. Pharmacol Biochem Behav 97(2):262–266

    Article  PubMed  CAS  Google Scholar 

  • Parker LA, Maier S, Rennie M, Crebolder J (1992) Morphine- and naltrexone-induced modification of palatability: analysis by the taste reactivity test. Behav Neurosci 106:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  • Peciña S, Berridge KC (2000) Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res 863:71–86

    Article  PubMed  Google Scholar 

  • Peciña S, Berridge KC (2005) Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 25:11777–11786

    Article  PubMed  Google Scholar 

  • Peciña S, Berridge KC (2008) Incentive salience mediation by opioid versus dopamine in nucleus accumbens shell and core: amplified cue-triggered ‘wanting’ for reward Society for Neuroscience. Society for Neuroscience, Washington, DC

    Google Scholar 

  • Peciña S, Schulkin J, Berridge KC (2006) Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol 4:8

    Article  PubMed  Google Scholar 

  • Petrovich GD, Setlow B, Holland PC, Gallagher M (2002) Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating. J Neurosci 22:8748–8753

    PubMed  CAS  Google Scholar 

  • Phillips AG, Vacca G, Ahn S (2008) A top-down perspective on dopamine, motivation and memory. Pharmacol Biochem Behav 90:236–249

    Article  PubMed  CAS  Google Scholar 

  • Pickens CL, Saddoris MP, Setlow B, Gallagher M, Holland PC, Schoenbaum G (2003) Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J Neurosci 23:11078–11084

    PubMed  CAS  Google Scholar 

  • Pielock SM, Lex B, Hauber W (2011) The role of dopamine in the dorsomedial striatum in general and outcome-selective Pavlovian-instrumental transfer. Eur J Neurosci 33:717–725

    Article  PubMed  Google Scholar 

  • Pitkanen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton J (ed) The amygdala: a functional analysis. Oxford University Press, Oxford, U.K., pp 31–116

    Google Scholar 

  • Rana SA, Parker LA (2008) Differential effects of neurotoxin-induced lesions of the basolateral amygdala and central nucleus of the amygdala on lithium-induced conditioned disgust reactions and conditioned taste avoidance. Behav Brain Res 189:284–297

    Article  PubMed  CAS  Google Scholar 

  • Richard JM, Berridge KC (2011) Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D(1) alone for appetitive eating but D(1) and D(2) together for fear. J Neurosci Off J Soc Neurosci 31:12866–12879

    Article  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Shiflett MW, Balleine BW (2010) At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur J Neurosci 32:1735–1743

    Article  PubMed  Google Scholar 

  • Shin AC, Pistell PJ, Phifer CB, Berthoud HR (2010) Reversible suppression of food reward behavior by chronic mu-opioid receptor antagonism in the nucleus accumbens. Neuroscience 170:580–588

    Article  PubMed  CAS  Google Scholar 

  • Small DM, Veldhuizen MG, Felsted J, Mak YE, McGlone F (2008) Separable substrates for anticipatory and consummatory food chemosensation. Neuron 57:786–797

    Article  PubMed  CAS  Google Scholar 

  • Smith KS, Berridge KC (2005) The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. J Neurosci 25:8637–8649

    Article  PubMed  CAS  Google Scholar 

  • Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27:1594–1605

    Article  PubMed  CAS  Google Scholar 

  • Smith KS, Berridge KC, Aldridge JW (2011) PNAS Plus: Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci USA

  • Smith KS, Mahler SV, Pecina S, Berridge KC (2010) Hedonic hotspots: Generating sensory pleasure in the brain. In: Kringelbach ML, Berridge KC (eds) Pleasures of the brain. Oxford Univ, Press, Oxford, UK, pp 62–73

    Google Scholar 

  • Stanley BG, Lanthier D, Leibowitz SF (1988) Multiple brain sites sensitive to feeding stimulation by opioid agonists: a cannula-mapping study. Pharmacol Biochem Behav 31:825–832

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (2003) The amygdala and its place in the cerebral hemisphere. Ann N Y Acad Sci 985:174–184

    Article  PubMed  Google Scholar 

  • Swanson LW (2005) Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J Comp Neurol 493:122–131

    Article  PubMed  Google Scholar 

  • Timberlake W, Grant DL (1975) Auto-shaping in rats to the presentation of another rat predicting food. Science 190:690–692

    Google Scholar 

  • Tindell AJ, Berridge KC, Zhang J, Pecina S, Aldridge JW (2005) Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. Eur J Neurosci 22:2617–2634

    Article  PubMed  Google Scholar 

  • Toates F (1986) Motivational Systems. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Walker KC (1942) Effect of a discriminative stimulus transferred to a previously unassociated response. J Exp Psychol 31:312–321

    Article  Google Scholar 

  • Wassum KM, Cely IC, Balleine BW, Maidment NT (2011) Micro-opioid receptor activation in the basolateral amygdala mediates the learning of increases but not decreases in the incentive value of a food reward. J Neurosc Off J Soc Neurosci 31:1591–1599

    Article  CAS  Google Scholar 

  • Wassum KM, Ostlund SB, Maidment NT, Balleine BW (2009) Distinct opioid circuits determine the palatability and the desirability of rewarding events. Proc Natl Acad Sci U S A 106:12512–12517

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw RB, Markou A, Robbins TW, Everitt BJ (1996) Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacol (Berl) 127:213–224

    CAS  Google Scholar 

  • Will MJ, Franzblau EB, Kelley AE (2004) The amygdala is critical for opioid-mediated binge eating of fat. NeuroReport 15:1857–1860

    Article  PubMed  CAS  Google Scholar 

  • Will MJ, Pritchett CE, Parker KE, Sawani AM, Ma H, Lai AY (2009) Behavioral characterization of amygdala involvement in mediating intra-accumbens opioid-driven feeding behavior. Behav Neurosci 123:781–793

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA, Mascagni F, McDonald AJ (2002) Sex differences in delta opioid receptor immunoreactivity in rat medial amygdala. Neurosci Lett 328:160–164

    Article  PubMed  CAS  Google Scholar 

  • Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci 20:8122–8130

    PubMed  CAS  Google Scholar 

  • Wyvell CL, Berridge KC (2001) Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci 21:7831–7840

    PubMed  CAS  Google Scholar 

  • Zahm DS (2006) The evolving theory of basal forebrain functional–anatomical ‘macrosystems’. Neurosci Biobehav Rev 30:148–172

    Article  PubMed  Google Scholar 

  • Zhang J, Berridge KC, Tindell AJ, Smith KS, Aldridge JW (2009) A neural computational model of incentive salience. PLoS Comput Biol 5:e1000437

    Article  PubMed  Google Scholar 

  • Zhu W, Pan ZZ (2004) Synaptic properties and postsynaptic opioid effects in rat central amygdala neurons. Neuroscience 127:871–879

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Pan ZZ (2005) Mu-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons. Neuroscience 133:97–103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

These experiments were funded by DA015188 and MH053649 to KCB, and DA021481 to SVM. We thank Stephen Chang and Brianne Dzwonek for assistance with behavioral testing and scoring, Michelle DiMondo and Phillip Hoberg for assistance with immunohistochemistry, Jill Becker for advice on estrus induction, and anonymous reviewers for helpful suggestions on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen V. Mahler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahler, S.V., Berridge, K.C. What and when to “want”? Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology 221, 407–426 (2012). https://doi.org/10.1007/s00213-011-2588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2588-6

Keywords

Navigation