Skip to main content
Log in

Age-dependent effects of chronic fluoxetine treatment on the serotonergic system one week following treatment

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are increasingly used for the treatment of depression in children. Limited data are, however, available on their effects on brain development and their efficacy remains debated. Moreover, previous experimental studies are seriously hampered in their clinical relevance.

Objectives

The aim of the present study was to investigate putative age-related effects of a chronic treatment with fluoxetine (5 mg/kg, either orally or i.p. for 3 weeks, 1 week washout) using conventional methods (behavioral testing and binding assay using [123I]β-CIT) and a novel magnetic resonance imaging (MRI) approach.

Methods

Behavior was assessed, as well as serotonin transporter (SERT) availability and function through ex vivo binding assays and in vivo pharmacological MRI (phMRI) with an acute fluoxetine challenge (10 mg/kg oral or 5 mg/kg i.v.) in adolescent and adult rats.

Results

Fluoxetine caused an increase in anxiety-like behavior in treated adult, but not adolescent, rats. On the binding assays, we observed increased SERT densities in most cortical brain regions and hypothalamus in adolescent, but not adult, treated rats. Finally, reductions in brain activation were observed with phMRI following treatment, in both adult and adolescent treated animals.

Conclusion

Collectively, our data indicate that the short-term effects of fluoxetine on the 5-HT system may be age-dependent. These findings could reflect structural and functional rearrangements in the developing brain that do not occur in the matured rat brain. phMRI possibly will be well suited to study this important issue in the pediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen SL, Navalta CP (2004) Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs. Int J Dev Neurosci 22:423–440

    Article  PubMed  CAS  Google Scholar 

  • Bachrach LK (2004) Bare-bones fact—children are not small adults. N Eng J Med 351:924–946

    Article  CAS  Google Scholar 

  • Beasley CM, Koke SC, Nilsson ME, Gonzales JS (2000) Adverse events and treatment discontinuations in clinical trials of fluoxetine in major depressive disorder. An updated meta-analysis. Clin Ther 22:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Bhagwagar Z, Cowen PJ (2008) 'It's not over when it's over', persistent neurobiological abnormalities in recovered depressed patients. Psychol Med 38:307–313

    Article  PubMed  CAS  Google Scholar 

  • Booij J, Bergmans P, Winogrodzka A, Speelman JD, Wolters ECh (2001) Imaging of dopamine transporters with [123I]FP-CIT SPECT does not suggest a significant effect of age on the symptomatic threshold of disease in Parkinson’s disease. Synapse 39:101–108

    Article  PubMed  CAS  Google Scholar 

  • Bouet V, Freret T, Ankri S, Bezault M, Renolleau S, Boulouard M, Jacotot E, Chauvier D, Schumann-Bard P (2010) Predicting sensorimotor and memory deficits after neonatal ischemic stroke with reperfusion in the rat. Behav Brain Res 212:56–63

    Article  PubMed  Google Scholar 

  • Bourdeaux R, Desor D, Lehr PR, Younos C, Capolaghi B (1998) Effects of fluoxetine and norfluoxetine on 5-hydroxytryptamine metabolism in blood platelets and brain after administration to rats. J Pharm Pharmacol 50:1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Caccia S, Cappi M, Fracasso C, Garattini S (1990) Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in the rat. Psychopharmacology 100:509–514

    Article  PubMed  CAS  Google Scholar 

  • Canli T, Lesch KP (2007) Long story short, the serotonin transporter in emotion regulation and social cognition. Nat Neurosci 10:1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Castro JE, Varea E, Márquez C, Cordero MI, Poirier G, Sandi C (2010) Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat. PLoS One 5:e8618

    Article  PubMed  Google Scholar 

  • Couillard-Despres S, Wuertinger C, Kandasamy M, Caioni M, Stadler K, Aigner R, Bogdahn U, Aigner L (2009) Ageing abolishes the effects of fluoxetine on neurogenesis. Mol Psychiatry 14:856–864

    Article  PubMed  CAS  Google Scholar 

  • Downey D, Juhasz G, McKie S, Davies KE, Thomas EJ, Chase D, Elliott R, Deakin JW, Anderson IM, Williams SR (2010) Short–long functional polymorphism of serotonin transporter gene modulates the acute citalopram challenge phMRI response. Poster ISMRM

  • Engelbregt MJ, Houdijk ME, Popp-Snijders C, Delemarre-van de Waal HA (2000) The effects of intra-uterine growth retardation and postnatal undernutrition on onset of puberty in male and female rats. Pediatr Res 48:803–807

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Cohen C, Perrault G, Sanger DJ (1999) Behavioral effects of acute and chronic fluoxetine in Wistar–Kyoto rats. Physiol Behav 67:315–320

    Article  PubMed  CAS  Google Scholar 

  • Hatzidimitriou G, McCann UD, Ricaurte GA (1999) Altered serotonin innervations patterns in the forebrain of monkeys treated with (±)3,4-methylenedioxymethamphetamine seven years previously, factors influencing abnormal recovery. J Neurosci 19:5096–5107

    PubMed  CAS  Google Scholar 

  • Heils A, Mossner R, Lesch KP (1997) The human serotonin transporter gene polymorphism--basic research and clinical implications. J Neural Transm 104:1005–1014

    Google Scholar 

  • Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D et al (1996) Allelic variation of human serotonin transporter gene expression. J Neurochem 66:2621–2624

    Article  PubMed  CAS  Google Scholar 

  • Homberg JR, Olivier JD, Blom T, Arentsen T, van BC, Schipper P, Korte-Bouws G, van LG, Reneman L (2011) Fluoxetine exerts age-dependent effects on behavior and amygdala neuroplasticity in the rat. PLoS ONE 6:e16646

  • Iñiguez SD, Warren BL, Bolaños-Guzmán CA (2010) Short- and long-term functional consequences of fluoxetine exposure during adolescence in male rats. Biol Psychiatry 67:1057–1066

    Article  PubMed  Google Scholar 

  • Kapornai K, Vetró A (2008) Depression in children. Curr Opin Psychiatry 21:1–7

    Article  PubMed  Google Scholar 

  • LaRoche RB, Morgan RE (2007) Adolescent fluoxetine exposure produces enduring, sex-specific alterations of visual discrimination and attention in rats. Neurotoxicol Teratol 29:96–107

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Aulakh CS, Wolozin BL, Tolliver TJ, Hill JL, Murphy DL (1993) Regional brain expression of serotonin transporter mRNA and its regulation by reuptake inhibiting antidepressants. Brain Res Mol Brain Res 17:31–35

    Article  PubMed  CAS  Google Scholar 

  • Lifschytz T, Shalom G, Lerer B, Newman ME (2006) Sex-dependent effects of fluoxetine andtriiodothyronine in the forced swim test in rats. Eur Neuropsychopharmacol 16:115–121

    Article  PubMed  CAS  Google Scholar 

  • McKie S, Del-Ben C, Elliott R, Williams S, del Vai N, Anderson I, Deakin JF (2005) Neuronal effects of acute citalopram detected by pharmaco MRI. Psychopharmacology 180:680–686

    Article  PubMed  CAS  Google Scholar 

  • Moll GH, Mehnert C, Wicker M, Bock N, Rothenberger A, Rüther E, Huether G (2000) Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Brain Res Dev Brain Res 119:251–257

    Article  PubMed  CAS  Google Scholar 

  • Navailles S, Hof PR, Schmauss C (2008) Antidepressant drug-induced stimulation of mouse hippocampal neurogenesis is age-dependent and altered by early life stress. J Comp Neurol 509:372–381

    Article  PubMed  CAS  Google Scholar 

  • Olfson M, Marcus SC, Shaffer D (2006) Antidepressant drug therapy and suicide in severely depressed children and adults: A case–control study. Arch Gen Psychiatry 63:865–872

    Article  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open-closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  PubMed  CAS  Google Scholar 

  • Piñeyro G, Blier P, Dennis T, de Montigny C (1994) Desensitization of the neuronal 5-HT carrier following its long-term blockade. J Neurosci 14:3036–3047

    PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  CAS  Google Scholar 

  • Preece MA, Taylor MJ, Raley J, Blamire A, Sharp T, Sibson NR (2009) Evidence that increased 5-HT release evokes region-specific effects on blood-oxygenation level-dependent functional magnetic resonance imaging responses in the rat brain. Neuroscience 159:751–759

    Article  PubMed  CAS  Google Scholar 

  • Reneman L, Booij J, Lavalaye J, de Bruin K, de Wolff FA, Koopmans RP, Stoof JC, den Heeten GJ (1999) Comparative in vivo study of iodine-123-labeled beta-CIT and nor-beta-CIT binding to serotonin transporters in rat brain. Synapse 34:77–80

    Article  PubMed  CAS  Google Scholar 

  • Rijks LJ, Booij J, Doornbos T, Boer GJ, Ronken E, de Bruin K, Vermeulen RJ, Janssen AG, van Royen EA (1996) In vitro and in vivo characterization of newly developed iodinated 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]piperazine derivatives in rats, limited value as dopamine transporter SPECT ligands. Synapse 23:201–207

    Article  PubMed  CAS  Google Scholar 

  • Schwarz AJ, Gozzi A, Reese T, Bifone A (2007) In vivo mapping of functional connectivity in neurotransmitter systems using pharmacological MRI. Neuroimage 34:1627–1636

    Article  PubMed  Google Scholar 

  • Shishkina GT, Kalinina TS, Dygalo NN (2007) Up-regulation of tryptophan hydroxylase-2 mRNA in the rat brain by chronic fluoxetine treatment correlates with its antidepressant effect. Neuroscience 150:404–412

    Article  PubMed  CAS  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Google Scholar 

  • Strupp JP (1996) Stimulate: A GUI based fMRI analysis software package. Neuroimage 3:S607

  • Swaab DF, Boer K (2001) Functional teratogenic effects of chemicals on the developing brain. In: Levene MI et al (eds) Fetal and neonatal neurology and neurosurgery, 3rd edn. Churchill Livingstone, London, pp 251–265

    Google Scholar 

  • Tordera RM, Monge A, Del Río J, Lasheras B (2002) Antidepressant-like activity of VN2222, a serotonin reuptake inhibitor with high affinity at 5-HT1A receptors. Eur J Pharmacol 442:63–71

    Article  PubMed  CAS  Google Scholar 

  • Wegerer V, Moll GH, Bagli M, Rothenberger A, Ruther E, Huether G (1999) Persistently increased density of serotonin transporters in the frontal cortex of rats treated with fluoxetine during early juvenile life. J Child Adolesc Psychopharmacol 9:13–24

    Article  PubMed  CAS  Google Scholar 

  • Whitaker-Azmitia PM, Azmitia EC (1989) Stimulation of astroglial serotonin receptors produces culture media which regulates growth of serotonergic neurons. Brain Res 497:80–85

    Google Scholar 

  • Whitaker-Azmitia PM, Druse M, Walker P, Lauder JM (1996) Serotonin as a developmental signal. Behav Brain Res 73:19–29

    Article  PubMed  CAS  Google Scholar 

  • Zito JM, Tobi H, de Jong-van den Berg LT, Fegert JM, Safer DJ, Janhsen K, Hansen DG, Gardner JF, Glaeske G (2006) Antidepressant prevalence for youths: a multi-national comparison. Pharmacoepidemiol Drug Saf 15:793–798

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Netherlands organization for health research and development (Veni nr. 916. 86.125), awarded to L. Reneman. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liesbeth Reneman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouet, V., Klomp, A., Freret, T. et al. Age-dependent effects of chronic fluoxetine treatment on the serotonergic system one week following treatment. Psychopharmacology 221, 329–339 (2012). https://doi.org/10.1007/s00213-011-2580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2580-1

Keywords

Navigation