Skip to main content

Advertisement

Log in

Abolition of the behavioral phenotype of adult netrin-1 receptor deficient mice by exposure to amphetamine during the juvenile period

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Netrin-1 guidance cues contribute to amphetamine-induced plasticity of the adult mesocorticolimbic dopamine system in rodents. The netrin-1 receptor, deleted in colorectal cancer (DCC), is upregulated by repeated amphetamine treatment selectively in the ventral tegmental area (VTA) of adult rats and wild-type mice. Furthermore, adult dcc heterozygous mice fail to show amphetamine-induced increases in VTA DCC expression and do not develop sensitization to this drug.

Objectives

The effects of netrin-1 receptor signaling on mesocorticolimbic dopamine system function change across development. However, the effects of AMPH on DCC receptor regulation and behavioral sensitization before puberty have not been determined. Here we examined whether (1) repeated amphetamine treatment would also alter DCC expression in juvenile rats and wild-type mice, and (2) dcc heterozygotes treated with amphetamine during the juvenile period (PND 22–32) would develop behavioral sensitization to this drug.

Results

Repeated amphetamine downregulates DCC expression selectively in the VTA of juvenile rodents. Moreover, the behavioral phenotype of adult dcc heterozygous mice is not present before puberty and is abolished by amphetamine treatment during the juvenile period. Remarkably, adult dcc heterozygotes pretreated with amphetamine as juveniles no longer exhibit reduced DCC expression in the VTA compared to wild-type controls.

Conclusions

Our results indicate that netrin-1 receptor signaling may be a key factor in determining individual differences in vulnerability to the behaviorally sensitizing effects of amphetamine at different ages. Moreover, they suggest that the juvenile period marks a window of vulnerability during which exposure to stimulant drugs can reverse the behavioral phenotype of adult dcc heterozygous mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benes FM, Vincent SL, Molloy R, Khan Y (1996) Increased interaction of dopamine-immunoreactive varicosities with GABA neurons of rat medial prefrontal cortex occurs during the postweanling period. Synapse 23:237–245

    Article  PubMed  CAS  Google Scholar 

  • Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, Diksic M, Benkelfat C (2006) Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch Gen Psychiatry 63:1386–1395

    Article  PubMed  CAS  Google Scholar 

  • Boudreau AC, Wolf ME (2005) Behavioral sensitization to cocaine is associated with increased AMPH receptor surface expression in the nucleus accumbens. J Neurosci 25:9144–9151

    Article  PubMed  CAS  Google Scholar 

  • Bowers MS, Chen BT, Bonci A (2010) AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future. Neuron 67:11–24

    Article  PubMed  CAS  Google Scholar 

  • Cabib S, Puglisi-Allegra S, Ventura R (2002) The contribution of comparative studies in inbred strains of mice to the understanding of the hyperactive phenotype. Behav Brain Res 130:103–109

    Article  PubMed  CAS  Google Scholar 

  • Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 15:3864–3873

    Google Scholar 

  • Carr DB, O’Donnell P, Card JP, Sesack SR (1999) Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens. J Neurosci 19:11049–11060

    PubMed  CAS  Google Scholar 

  • Collo G, Zanetti S, Missale C, Spano P (2008) Dopamine D3 receptor-preferring agonists increase dendrite arborization of mesencephalic dopaminergic neurons via extracellular signal-regulated kinase phosphorylation. Eur J Neurosci 28:1231–1240

    Article  PubMed  Google Scholar 

  • Colon-Ramos DA, Margeta MA, Shen K (2007) Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. Science 318:103–106

    Article  PubMed  CAS  Google Scholar 

  • de Wit H (1998) Individual differences in acute effects of drugs in humans: their relevance to risk for abuse. NIDA Res Monogr 169:176–187

    PubMed  Google Scholar 

  • Feder A, Nestler EJ, Charney DS (2009) Psychobiology and molecular genetics of resilience. Nat Rev Neurosci 10:446–457

    Article  PubMed  CAS  Google Scholar 

  • Flores C (2010) Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system. J of Psychiatry and Neurosci 36(2):100171

    Google Scholar 

  • Flores C, Samaha AN, Stewart J (2000) Requirement of endogenous basic fibroblast growth factor for sensitization to amphetamine. J Neurosci 20:RC55

    PubMed  CAS  Google Scholar 

  • Flores C, Manitt C, Rodaros D, Thompson KM, Rajabi H, Luk KC, Tritsch NX, Sadikot AF, Stewart J, Kennedy TE (2005) Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Mol Psychiatry 10:606–612

    Article  PubMed  CAS  Google Scholar 

  • Grant A, Hoops D, Labelle-Dumais C, Prevost M, Rajabi H, Kolb B, Stewart J, Arvanitogiannis A, Flores C (2007) Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine. Eur J Neurosci 26:3215–3228

    Article  PubMed  Google Scholar 

  • Grant A, Speed Z, Labelle-Dumais C, Flores C (2009) Post-pubertal emergence of a dopamine phenotype in netrin-1 receptor-deficient mice. Eur J Neurosci 30:1318–1328

    Article  PubMed  Google Scholar 

  • Kalsbeek A, Voorn P, Buijs RM, Pool CM, Uylings HB (1988) Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 269:58–72

    Article  PubMed  CAS  Google Scholar 

  • Le Moal M (2009) Drug abuse: vulnerability and transition to addiction. Pharmacopsychiatry 42(Suppl 1):S42–S55

    Article  PubMed  Google Scholar 

  • Leslie CA, Robertson MW, Cutler AJ, Bennet JP Jr (1991) Postnatal development of D1 dopamine receptors in the medial prefrontal cortex, striatum and nucleus accumbens of normal and neonatal 6-hydroxydopamine treated rats: a quantitative autoradiographic analysis. Brain Res Dev Brain Res 62:109–114

    Article  PubMed  CAS  Google Scholar 

  • Leyton M (2007) Conditioned and sensitized responses to stimulant drugs in humans. Prog Neuropsychopharmacol Biol Psychiatry 31:1601–1613

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, Boileau I, Benkelfat C, Diksic M, Baker G, Dagher A (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 27:1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Manitt C, Kennedy TE (2002) Where the rubber meets the road: netrin expression and function in developing and adult nervous systems. Prog Brain Res 137:425–442

    Article  PubMed  CAS  Google Scholar 

  • Manitt C, Thompson KM, Kennedy TE (2004) Developmental shift in expression of netrin receptors in the rat spinal cord: predominance of UNC-5 homologues in adulthood. J Neurosci Res 77:690–700

    Article  PubMed  CAS  Google Scholar 

  • Manitt C, Nikolakopoulou AM, Almario DR, Nguyen SA, Cohen-Cory S (2009) Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain. J Neurosci 29:11065–11077

    Article  PubMed  CAS  Google Scholar 

  • Manitt C, Labelle-Dumais C, Eng C, Grant A, Mimee A, Stroh T, Flores C (2010) Peri-pubertal emergence of UNC-5 homologue expression by dopamine neurons in rodents. PLoS ONE 5:e11463

    Article  PubMed  Google Scholar 

  • Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Copper HM, Kolb B, Flores C (2011) The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. J Neurosci (in press)

  • Moore SW, Tessier-Lavigne M, Kennedy TE (2007) Netrins and their receptors. Adv Exp Med Biol 621:17–31

    Article  PubMed  Google Scholar 

  • Mueller D, Chapman CA, Stewart J (2006) Amphetamine induces dendritic growth in ventral tegmental area dopaminergic neurons in vivo via basic fibroblast growth factor. Neuroscience 137:727–735

    Article  PubMed  CAS  Google Scholar 

  • Osborne PB, Halliday GM, Cooper HM, Keast JR (2005) Localization of immunoreactivity for deleted in colorectal cancer (DCC), the receptor for the guidance factor netrin-1, in ventral tier dopamine projection pathways in adult rodents. Neuroscience 131:671–681

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  • Piazza PV, Deroche V, Rouge-Pont F, Le Moal M (1998) Behavioral and biological factors associated with individual vulnerability to psychostimulant abuse. NIDA Res Monogr 169:105–133

    PubMed  CAS  Google Scholar 

  • Pierce RC, Kalivas PW (2007) Locomotor behavior. In: Crawley J (ed) Current protocols in neuroscience. Wiley, New York

    Google Scholar 

  • Poon VY, Klassen MP, Shen K (2008) UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature 455:669–673

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46

    Article  PubMed  CAS  Google Scholar 

  • Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O, Sanchez de Medina F (2010) Reversible ponceau staining as a loading control alternative to actin in western blots. Anal Biochem 401:318–320

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Grace A (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    Article  PubMed  Google Scholar 

  • Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminal in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160

    Article  PubMed  CAS  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Article  PubMed  CAS  Google Scholar 

  • Srour M, Riviere JB, Pham JM, Dube MP, Girard S, Morin S, Dion PA, Asselin G, Rochefort D, Hince P, Diab S, Sharafaddinzadeh N, Chouinard S, Theoret H, Charron F, Rouleau GA (2010) Mutations in DCC cause congenital mirror movements. Science 328:592

    Article  PubMed  CAS  Google Scholar 

  • Teicher MH, Barber NI, Gelbard HA, Gallitano AL, Campbell A, Marsh E, Baldessarini RJ (1993) Developmental differences in acute nigrostriatal and mesocorticolimbic dopamine system response to haloperidol. Neuropsychopharmacology 9:147–156

    PubMed  CAS  Google Scholar 

  • Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63:241–320

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151:99–120

    Article  CAS  Google Scholar 

  • Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (2008) Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox Res 14:169–183

    Article  PubMed  Google Scholar 

  • Wolf ME (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 54:679–720

    Article  PubMed  CAS  Google Scholar 

  • Yetnikoff L, Labelle-Dumais C, Flores C (2007) Regulation of netrin-1 receptors by amphetamine in the adult brain. Neuroscience 150:764–773

    Article  PubMed  CAS  Google Scholar 

  • Yetnikoff L, Eng C, Benning S, Flores C (2010) Netrin-1 receptor in the ventral tegmental area is required for sensitization to amphetamine. Eur J Neurosci 31:1292–1302

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jane Stewart for critical reading of the manuscript and Susan Ackerman (The Jackson Laboratory) for the original dcc heterozygous breeders. All experimental procedures were performed in accordance with the guidelines of the Canadian Council on Animal Care, the Animal Committee of the Douglas Mental Health University Institute/McGill University, and the Concordia University Animal Research Ethics Committee.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Flores.

Additional information

This work was funded by the Natural Science and Engineering Research Council of Canada, the Fonds de la Recherche en Santé du Québec, and the Fonds Québécois de la Recherche sur la Nature et les Technologies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yetnikoff, L., Almey, A., Arvanitogiannis, A. et al. Abolition of the behavioral phenotype of adult netrin-1 receptor deficient mice by exposure to amphetamine during the juvenile period. Psychopharmacology 217, 505–514 (2011). https://doi.org/10.1007/s00213-011-2312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2312-6

Keywords

Navigation