Skip to main content
Log in

Anxiolytic-like effects of somatostatin isoforms SST 14 and SST 28 in two animal models (Rattus norvegicus) after intra-amygdalar and intra-septal microinfusions

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

Somatostatin (SST) isoforms, SST 14 and SST 28, inhibit regulatory hormones in the periphery (e.g., growth hormone) and are widely distributed in the brain. In recent experiments, intracerebroventricular (ICV) SST produced anxiolytic-like effects in both behavioral and electrophysiological models. The sites of action of these anxiolytic effects in the brain, however, and the relative contributions of SST 14 and SST 28 to these effects are unknown.

Materials and methods

Anxiolytic effects were assessed in the plus-maze and shock-probe tests after (1) intra-amygdalar microinfusion of SST 14 (0.5 or 3 μg per hemisphere) or SST 28 (3 μg per hemisphere), (2) intra-septal microinfusion of SST 14 (0.5 or 1.5 μg per hemisphere) or SST 28 (1.5 μg per hemisphere), or (3) intra-striatal microinfusion of SST 14 (3 μg per hemisphere).

Results

Intra-amygdalar and intra-septal microinfusions of SST 14 and SST 28 produced robust anxiolytic-like effects in the behavioral tests, unlike intra-striatal microinfusions. The magnitude of the anxiolytic effects in the amygdala and septum were comparable to those found previously with ICV SST 14, ICV L-779976, an SST (sst2) receptor agonist, and ICV diazepam, a classical benzodiazepine anxiolytic.

Conclusions

SST receptors in the septum and amygdala are responsive to both SST 14 and SST 28, but not those in the striatum. Although no obvious differences in the anxiolytic-like effects of the isoforms were detected, quantitative or even qualitative differences in their specific anxiolytic effects may occur in different sub-regions of the septum and amygdala, as has been found for benzodiazepine anxiolytics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Authier et al (2002) Behavioural assessment of dimethylsulfoxide neurotoxicity in rats. Toxicology Letters 132(2):117–121

  • Bassant M, Simon A, Poindessous-Jazat F, Csaba Z, Epelbaum J, Dournaud P (2005) Medial septal GABAergic neurons express the somatostatin sst2a receptor: functional consequences on unit firing and hippocampal theta. J Neurosci 25:2032–2041

    Article  PubMed  CAS  Google Scholar 

  • Batten TFC, Gamboa-Esteves FO, Saha S (2002) Evidence for peptide co-transmission in retrograde and anterograde-labelled central nucleus of amygdala neurones projecting to NTS. Auton Neurosci 98:28–32

    Article  PubMed  CAS  Google Scholar 

  • Breder CD, Yamada Y, Yasuda K, Seino S, Saper CB, Bell GI (1992) Differential expression of somatostatin receptor subtypes in brain. J Neurosci 12:3920–3934

    PubMed  CAS  Google Scholar 

  • Brien S, Prescott P, Bashir N, Lewith H, Lewith G (2008) Systematic review of the nutritional supplements dimethyl sulfoxide (DMSO) and methylsulfonylmethane (MSM) in the treatment of osteoarthritis. Osteoarthritis Cartilage 16:1277–1288

    Article  PubMed  CAS  Google Scholar 

  • Cervia D, Bagnoli P (2007) An update on somatostatin receptor signalling in native systems and new insights on their pathophysiology. Pharmacol Ther 116:322–341

    Article  PubMed  CAS  Google Scholar 

  • Chrubasik S, Ziegler R (1996) Does the somatostatin analogue pctreotide have a role in pain relief? Pain Clin 8:369–375

    Google Scholar 

  • De Jong M, Breeman WAP, Bernard HF, Kooij PPM, Slooter GD, Van Eijck CHJ, Kwekkeboom DJ, Valkema R, Macke HR, Krenning EP (1999) Therapy of neuroendocrine tumors with radiolabeled somatostatin-analogues. Q J Nucl Med 43:356–366

    PubMed  Google Scholar 

  • Degroot A, Treit D (2004) Anxiety is functionally segregated within the septo-hippocampal system. Brain Res 1001:60–71

    Article  PubMed  CAS  Google Scholar 

  • Dutar P, Vaillend C, Viollet C, Billard JM, Potier B, Carlo AS, Ungerer A, Epelbaum J (2002) Spatial learning and synaptic hippocampal plasticity in type 2 somatostatin receptor knock-out mice. Neuroscience 112:455–466

    Article  PubMed  CAS  Google Scholar 

  • Engin E, Treit D (2009) Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. Psychopharmacology (Berl) 206:281–289

    Article  CAS  Google Scholar 

  • Engin E, Stellbrink J, Treit D (2008) Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. Neuroscience 157:666–676

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, McNaughton N (2000) The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Hall T et al (2007) A high performance liquid chromatography assay for monitoring proprotein convertase activity. J Chromatogr A 1148:46–54

    Article  PubMed  CAS  Google Scholar 

  • Hofland LJ, van Koetsveld PM, Wouters N, Waaijers M, Reubi JC, Lamberts SW (1992) Dissociation of antiproliferative and antihormonal effects of the somatostatin analog octreotide on 7315b pituitary tumor cells. Endocrinology 131:571–577

    Article  PubMed  CAS  Google Scholar 

  • Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54:21–30

    Article  PubMed  CAS  Google Scholar 

  • Karschin A (1995) Molecular single cell analysis intensifies somatostatin type 1 (sst1) receptors to block inward rectifying K+ channels in rat brain oligodendrocytes. Neuroreport 7:121–124

    PubMed  CAS  Google Scholar 

  • Keppel G, Zedeck S (1989) Data analysis for research design: analysis of variance and multiple regression/correlation approaches. W. H. Freeman, New York

    Google Scholar 

  • Kreienkamp HJ, Hönck HH, Richter D (1997) Coupling of rat somatostatin receptor subtypes to a G-protein gated inwardly rectifying potassium channel (GIRK1). FEBS Lett 419:92–94

    Article  PubMed  CAS  Google Scholar 

  • LeDoux J (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  • Leroux P, Quirion R, Pelletier G (1985) Localization and characterization of brain somatostatin receptors as studied with somatostatin-14 and somatostatin-28 receptor radioautography. Brain Res 347:74–84

    Article  PubMed  CAS  Google Scholar 

  • Mandarino L, Stenner D, Blanchard W, Nissen S, Gerich J, Ling N, Brazeau P, Bohlen P, Esch F, Guillemin R (1981) Nature 291:76–77

    Article  PubMed  CAS  Google Scholar 

  • McNaughton N, Kocsis B, Hajos M (2007) Elicited hippocampal theta rhythm: a screen for anxiolytic and procognitive drugs through changes in hippocampal function? Behav Pharmacol 18:329–346

    Article  PubMed  CAS  Google Scholar 

  • Meis S, Sosulina L, Schulz S, Höllt V, Pape HC (2005) Mechanisms of somatostatin-evoked responses in neurons of the rat lateral amygdala. Eur J Neurosci 21:755–762

    Article  PubMed  Google Scholar 

  • Moller LN, Stidsen CE, Hartmann B, Holst JJ (2003) Somatostatin receptors. Biochim Biophys Acta 1616:1–84

    Article  PubMed  CAS  Google Scholar 

  • Nanda SA, Qi C, Roseboom PH, Kalin NH (2008) Predator stress induces behavioral inhibition and amygdala somatostatin receptor 2 gene expression. Genes Brain Behav 7:639–648

    Article  PubMed  CAS  Google Scholar 

  • Olias G, Viollet C, Kusserow H, Epelbaum J, Meyerhof W (2004) Regulation and function of somatostatin receptors. J Neurochem 89:1057–1091

    Article  PubMed  CAS  Google Scholar 

  • Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24:525–529

    Article  PubMed  CAS  Google Scholar 

  • Pesold C, Treit D (1994) The septum and amygdala differentially mediate the anxiolytic effects of benzodiazepines. Brain Res 638:295–301

    Article  PubMed  CAS  Google Scholar 

  • Pesold C, Treit D (1995) The central and basolateral amygdala differentially mediate the anxiolytic effects of benzodiazepines. Brain Res 671:213–221

    Article  PubMed  CAS  Google Scholar 

  • Pesold C, Treit D (1996) The neuroanatomical specificity of the anxiolytic effects of intra-septal infusions of midazolam. Brain Res 710:161–168

    Article  PubMed  CAS  Google Scholar 

  • Pinter E, Helyes Z, Szolcsanyi J (2006) Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol Ther 112:440–456

    Article  PubMed  CAS  Google Scholar 

  • Robbins RJ, Reichlin S (1983) Somatostatin biosynthesis by cerebral cortical cells in monolayer culture. Endocrinol 113:574–581

    Article  CAS  Google Scholar 

  • Saha S, Henderson Z, Batten TF (2002) Somatostatin immunoreactivity in axon terminals in rat nucleus tractus solitarii arising from central nucleus of amygdala: coexistence with GABA and postsynaptic expression of sst2A receptor. J Chem Neuroanat 24:1–13

    Article  PubMed  CAS  Google Scholar 

  • Santis S, Kastellakis A, Kotzamani D, Pitarokoili K, Kokona D, Thermos K (2009) Somatostatin increases rat locomotor activity by activating sst2 and sst4 receptors in the striatum and via glutamatergic involvement. Naunyn-Schmiedeberg's Arch Pharmacol 379:181–189

    Article  CAS  Google Scholar 

  • Schindler M, Humphrey PPA, Emson PC (1996) Somatostatin receptors in the central nervous system. Prog Neurobiol 50:9–47

    Article  PubMed  CAS  Google Scholar 

  • Selmer IG, Schindler M, Allen JP, Humphrey PPA, Emson PC (2000) Advances in understanding neuronal somatostatin receptors. Regul Peptide 90:1–18

    Article  CAS  Google Scholar 

  • Semenova S, Hoyer D, Geyer MA, Markou A (2010) Somatostatin-28 modulates prepulse inhibition of the acoustic startle response, reward processes and spontaneous locomotor activity in rats. Neuropeptides 44:421–429

    Article  PubMed  CAS  Google Scholar 

  • Shin J, Gireesh G, Kim S et al (2009) Phospholipase c β4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors. J Neurosci 29:15375–15385

    Article  PubMed  CAS  Google Scholar 

  • Sur C, Korn H, Triller A (1994) Colocalization of somatostatin with GABA or glutamate in distinct afferent terminals presynaptic to the Mauthner cell. J Neurosci 14:576–589

    PubMed  CAS  Google Scholar 

  • Tallman JF, Gallager DW (1985) The GABA-ergic system: a locus of benzodiazepine action. Annu Rev Neurosci 8:21–44

    Article  PubMed  CAS  Google Scholar 

  • Treit D (1985) Animal models for the study of anti-anxiety agents: a review. Neurosci Biobehav Rev 9:203–222

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Menard J (1997) Dissociations among the anxiolytic effects of septal, hippocampal, and amygdaloid lesions. Behav Neurosci 111:653–658

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Menard J (2000) The septum and anxiety. In: Numan R (ed) The behavioral neuroscience of the septal region. Springer, New York, pp 210–233

    Chapter  Google Scholar 

  • Treit D, Pinel JPJ (2005) Defensive burying. In: Wishaw IQ, Kold B (eds) The behavior of the laboratory rat. Oxford University Press, New York, pp 353–362

    Google Scholar 

  • Treit D, Menard J, Royan C (1993) Anxiogenic stimuli in the elevated plus-maze. Pharmacol Biochem Behav 44:463–469

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Engin E, McEown K (2010) Animal models of anxiety and anxiolytic drug action. In: Stein MB, Steckler T (eds) Behavioral neurobiology of anxiety and its treatment. Springer, New York, pp 121–160

    Google Scholar 

  • Vécsei L, Widerlöv E, Alling C, Zsigó J, Pávó I, Penke B (1990) Somatostatin28(15–28), but not somatostatin28(1–12), affects central monoaminergic neurotransmission in rats. Neuropeptides 16:181–186

    Article  PubMed  Google Scholar 

  • Wang HL, Bogen C, Reisine T, Dichter M (1989) Somatostatin-14 and somatostatin-28 induce opposite effects on potassium currents in rat neocortical neurons. Proc Natl Acad Sci USA 86:9616–9620

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Dichter M, Reisine T (2000) Lack of cross-desensitization of somatostatin-14 and somatostatin-28 receptors coupled to potassium channels in rat neocortical neurons. Mol Pharmacol 38:357–361

    Google Scholar 

  • Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C (2003) Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Dis 2:999–1017

    Article  CAS  Google Scholar 

  • Williams G, Ball JA, Lawson RA, Joplin GF, Bloom SR, Maskill MR (1987) Analgesic effect of somatostatin analogue (octreotide) in headache associated with pituitary tumours. Br Med J (Clin Res Ed) 295:247–248

    Article  CAS  Google Scholar 

  • Zingg HH, Patel YC (1982) Processing of synthetic somatostatin-28 and a related endogenous rat hypothalamic somatostatin-like molecule by hypothalamic enzymes. Life Sci 30:525–533

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dallas Treit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeung, M., Engin, E. & Treit, D. Anxiolytic-like effects of somatostatin isoforms SST 14 and SST 28 in two animal models (Rattus norvegicus) after intra-amygdalar and intra-septal microinfusions. Psychopharmacology 216, 557–567 (2011). https://doi.org/10.1007/s00213-011-2248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2248-x

Keywords

Navigation