Skip to main content
Log in

Nicotinic acetylcholine receptors and depression: a review of the preclinical and clinical literature

  • review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Many patients with depression fail to derive sufficient benefit from available treatment options, with up to a third never reaching remission despite multiple trials of appropriate treatment. Novel antidepressant agents are needed, and drugs targeting nicotinic acetylcholine receptors (nAChRs) appear to hold promise in this regard. nAChRs are involved in a variety of neurobiological systems implicated in the pathophysiology of depression. In addition to their role in cholinergic neurotransmission, they modulate dopamine function and influence inflammation and hypothalamic–pituitary–adrenal axis activity. Preclinical studies have suggested antidepressant-like effects of drugs targeting nAChRs, with the most consistent results observed with α4β2 nAChR modulators such as varenicline and nonspecific nAChR antagonists such as mecamylamine. These agents appear to offer the most potential antidepressant-like efficacy when used in conjunction with other established antidepressant treatments. nAChR modulators also influence neural processes that appear to mediate the behavioral effects of antidepressants, such as hippocampal cell proliferation. Clinical evidence, while limited, shows preliminary efficacy for mecamylamine and varenicline. Taken together, the preclinical and clinical evidence suggests that drugs targeting nAChRs may represent an important new approach to the treatment of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Administration USFaD (2009) Varenicline (Marketed as Chantix) Available at: www.fda.gov/CDER/Drug/Infopage/varenicline/default.htm [accessed 12/2009].

  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    Article  PubMed  CAS  Google Scholar 

  • Andreasen JT, Redrobe JP (2009a) Antidepressant-like effects of nicotine and mecamylamine in the mouse forced swim and tail suspension tests: role of strain, test and sex. Behav Pharmacol 20:286–295

    Article  PubMed  CAS  Google Scholar 

  • Andreasen JT, Redrobe JP (2009b) Nicotine, but not mecamylamine, enhances antidepressant-like effects of citalopram and reboxetine in the mouse forced swim and tail suspension tests. Behav Brain Res 197:150–156

    Article  PubMed  CAS  Google Scholar 

  • Andreasen JT, Olsen GM, Wiborg O, Redrobe JP (2009) Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests. J Psychopharmacol 23:797–804

    Article  PubMed  CAS  Google Scholar 

  • Arias HR (2009) Is the inhibition of nicotinic acetylcholine receptors by bupropion involved in its clinical actions? Int J Biochem Cell Biol 41:2098–2108

    Article  PubMed  CAS  Google Scholar 

  • Arias HR, Feuerbach D, Targowska-Duda KM, Russell M, Jozwiak K (2010) Interaction of selective serotonin reuptake inhibitors with neuronal nicotinic acetylcholine receptors. Biochemistry (in press)

  • Bacher I, Wu B, Shytle DR, George TP (2009) Mecamylamine—a nicotinic acetylcholine receptor antagonist with potential for the treatment of neuropsychiatric disorders. Expert Opin Pharmacother 10:2709–2721

    Article  PubMed  CAS  Google Scholar 

  • Beck CH, Fibiger HC (1995) Chronic desipramine alters stress-induced behaviors and regional expression of the immediate early gene, c-fos. Pharmacol Biochem Behav 51:331–338

    Article  PubMed  CAS  Google Scholar 

  • Bruijnzeel AW, Prado M, Isaac S (2009) Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse. Biol Psychiatry 66:110–117

    Article  PubMed  CAS  Google Scholar 

  • Caldarone BJ, Harrist A, Cleary MA, Beech RD, King SL, Picciotto MR (2004) High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation. Biol Psychiatry 56:657–664

    Article  PubMed  CAS  Google Scholar 

  • Cincotta SL, Yorek MS, Moschak TM, Lewis SR, Rodefer JS (2008) Selective nicotinic acetylcholine receptor agonists: potential therapies for neuropsychiatric disorders with cognitive dysfunction. Curr Opin Investig Drugs 9:47–56

    PubMed  CAS  Google Scholar 

  • Damaj MI, Carroll FI, Eaton JB, Navarro HA, Blough BE, Mirza S, Lukas RJ, Martin BR (2004) Enantioselective effects of hydroxy metabolites of bupropion on behavior and on function of monoamine transporters and nicotinic receptors. Mol Pharmacol 66:675–682

    Article  PubMed  CAS  Google Scholar 

  • Dani JA, Harris RA (2005) Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nat Neurosci 8:1465–1470

    Article  PubMed  CAS  Google Scholar 

  • Dilsaver SC, Alessi NE (1987) Chronic inescapable footshock produces cholinergic system supersensitivity. Biol Psychiatry 22:914–918

    Article  PubMed  CAS  Google Scholar 

  • Dilsaver SC, Snider RM, Alessi NE (1986) Stress induces supersensitivity of a cholinergic system in rats. Biol Psychiatry 21:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Djuric VJ, Dunn E, Overstreet DH, Dragomir A, Steiner M (1999) Antidepressant effect of ingested nicotine in female rats of Flinders resistant and sensitive lines. Physiol Behav 67:533–537

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC, Furey ML (2010) Replication of Scopolamine’s antidepressant efficacy in major depressive disorder: a randomized, placebo-controlled clinical trial. Biol Psychiatry 67:432–438

    Article  PubMed  CAS  Google Scholar 

  • Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 26:219–233

    Article  PubMed  CAS  Google Scholar 

  • Figueredo LZ, Moreira KM, Ferreira TL, Fornari RV, Oliveira MG (2008) Interaction between glutamatergic-NMDA and cholinergic-muscarinic systems in classical fear conditioning. Brain Res Bull 77:71–76

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Logan J, Wang GJ, Volkow ND (2003) Monoamine oxidase and cigarette smoking. Neurotoxicology 24:75–82

    Article  PubMed  CAS  Google Scholar 

  • Freedman R (2007) Exacerbation of schizophrenia by varenicline. Am J Psychiatry 164:1269

    Article  PubMed  Google Scholar 

  • Furey ML, Drevets WC (2006) Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 63:1121–1129

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Andersson K, Eneroth P, Harfstrand A, Agnati LF (1989) Neuroendocrine actions of nicotine and of exposure to cigarette smoke: medical implications. Psychoneuroendocrinology 14:19–41

    Article  PubMed  CAS  Google Scholar 

  • Gallowitsch-Puerta M, Pavlov VA (2007) Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci 80:2325–2329

    Article  PubMed  CAS  Google Scholar 

  • Gentry CL, Lukas RJ (2002) Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord 1:359–385

    Article  PubMed  CAS  Google Scholar 

  • George TP, Sacco KA, Vessicchio JC, Weinberger AH, Shytle RD (2008) Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J Clin Psychopharmacol 28:340–344

    Article  PubMed  CAS  Google Scholar 

  • Gonzales D, Rennard SI, Nides M, Oncken C, Azoulay S, Billing CB, Watsky EJ, Gong J, Williams KE, Reeves KR (2006) Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA 296:47–55

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491

    Article  PubMed  CAS  Google Scholar 

  • Gunnell D, Irvine D, Wise L, Davies C, Martin RM (2009) Varenicline and suicidal behaviour: a cohort study based on data from the General Practice Research Database. BMJ 339:b3805

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR (2007) Depression during tobacco abstinence. Nicotine Tob Res 9:443–446

    Article  PubMed  Google Scholar 

  • Janowsky DS, Risch CR (1983) Cholinomimetic and anticholinergic drugs used to investigate an acetylcholine hypothesis of affective disorders and stress. Drug Devel Res 4:125–142

    Article  Google Scholar 

  • Janowsky DS, el-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632–635

    Article  PubMed  CAS  Google Scholar 

  • Janowsky DS, el-Yousef MK, Davis JM (1974) Acetylcholine and depression. Psychosom Med 36:248–257

    PubMed  CAS  Google Scholar 

  • Jorenby DE, Hays JT, Rigotti NA, Azoulay S, Watsky EJ, Williams KE, Billing CB, Gong J, Reeves KR (2006) Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA 296:56–63

    Article  PubMed  CAS  Google Scholar 

  • Kalman D, Morissette SB, George TP (2005) Co-morbidity of smoking in patients with psychiatric and substance use disorders. Am J Addict 14:106–123

    Article  PubMed  Google Scholar 

  • Kirschbaum C, Pirke KM, Hellhammer DH (1993) The ‘Trier Social Stress Test’—a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28:76–81

    Article  PubMed  CAS  Google Scholar 

  • Kohen I, Kremen N (2007) Varenicline-induced manic episode in a patient with bipolar disorder. Am J Psychiatry 164:1269–1270

    Article  PubMed  Google Scholar 

  • Kudielka BM, Hellhammer DH, Wust S (2009) Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology 34:2–18

    Article  PubMed  CAS  Google Scholar 

  • Li X, Rainnie DG, McCarley RW, Greene RW (1998) Presynaptic nicotinic receptors facilitate monoaminergic transmission. J Neurosci 18:1904–1912

    PubMed  CAS  Google Scholar 

  • Lippiello PM, Beaver JS, Gatto GJ, James JW, Jordan KG, Traina VM, Xie J, Bencherif M (2008) TC-5214 (S-(+)-mecamylamine): a neuronal nicotinic receptor modulator with antidepressant activity. CNS Neurosci Ther 14:266–277

    Article  PubMed  CAS  Google Scholar 

  • Livingstone PD, Dickinson JA, Srinivasan J, Kew JN, Wonnacott S (2010) Glutamate-dopamine crosstalk in the rat prefrontal cortex is modulated by Alpha7 nicotinic receptors and potentiated by PNU-120596. J Mol Neurosci 40:172–176

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28:1562–1571

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    PubMed  CAS  Google Scholar 

  • Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442

    Article  PubMed  Google Scholar 

  • Matta SG, Fu Y, Valentine JD, Sharp BM (1998) Response of the hypothalamo-pituitary-adrenal axis to nicotine. Psychoneuroendocrinology 23:103–113

    Article  PubMed  CAS  Google Scholar 

  • McClernon FJ, Hiott FB, Westman EC, Rose JE, Levin ED (2006) Transdermal nicotine attenuates depression symptoms in nonsmokers: a double-blind, placebo-controlled trial. Psychopharmacology (Berl) 189:125–133

    Article  CAS  Google Scholar 

  • McClure JB, Swan GE, Jack L, Catz SL, Zbikowski SM, McAfee TA, Deprey M, Richards J, Javitz H (2009) Mood, side-effects and smoking outcomes among persons with and without probable lifetime depression taking varenicline. J Gen Intern Med 24:563–569

    Article  PubMed  Google Scholar 

  • Meyer PM, Strecker K, Kendziorra K, Becker G, Hesse S, Woelpl D, Hensel A, Patt M, Sorger D, Wegner F, Lobsien D, Barthel H, Brust P, Gertz HJ, Sabri O, Schwarz J (2009) Reduced alpha4beta2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease. Arch Gen Psychiatry 66:866–877

    Article  PubMed  CAS  Google Scholar 

  • Mihailescu S, Palomero-Rivero M, Meade-Huerta P, Maza-Flores A, Drucker-Colin R (1998) Effects of nicotine and mecamylamine on rat dorsal raphe neurons. Eur J Pharmacol 360:31–36

    Article  PubMed  CAS  Google Scholar 

  • Mihailescu S, Guzman-Marin R, Dominguez Mdel C, Drucker-Colin R (2002) Mechanisms of nicotine actions on dorsal raphe serotoninergic neurons. Eur J Pharmacol 452:77–82

    Article  PubMed  CAS  Google Scholar 

  • Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741

    Article  PubMed  CAS  Google Scholar 

  • Mineur YS, Picciotto MR (2009) Biological basis for the co-morbidity between smoking and mood disorders. J Dual Diagn 5:122–130

    Article  PubMed  Google Scholar 

  • Mineur YS, Somenzi O, Picciotto MR (2007) Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice. Neuropharmacology 52:1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Mineur YS, Eibl C, Young G, Kochevar C, Papke RL, Gundisch D, Picciotto MR (2009) Cytisine-based nicotinic partial agonists as novel antidepressant compounds. J Pharmacol Exp Ther 329:377–386

    Article  PubMed  CAS  Google Scholar 

  • Ochoa EL, Lasalde-Dominicci J (2007) Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking. Cell Mol Neurobiol 27:609–639

    Article  PubMed  CAS  Google Scholar 

  • Okuda H, Shioda S, Nakai Y, Nakayama H, Okamoto M, Nakashima T (1993) The presence of corticotropin-releasing factor-like immunoreactive synaptic vesicles in axon terminals with nicotinic acetylcholine receptor-like immunoreactivity in the median eminence of the rat. Neurosci Lett 161:183–186

    Article  PubMed  CAS  Google Scholar 

  • Overstreet DH (1993) The Flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev 17:51–68

    Article  PubMed  CAS  Google Scholar 

  • Papke RL, Sanberg PR, Shytle RD (2001) Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes. J Pharmacol Exp Ther 297:646–656

    PubMed  CAS  Google Scholar 

  • Paradiso KG, Steinbach JH (2003) Nicotine is highly effective at producing desensitization of rat alpha4beta2 neuronal nicotinic receptors. J Physiol 553:857–871

    Article  PubMed  CAS  Google Scholar 

  • Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468

    Article  PubMed  CAS  Google Scholar 

  • Patterson F, Jepson C, Strasser AA, Loughead J, Perkins KA, Gur RC, Frey JM, Siegel S, Lerman C (2009) Varenicline improves mood and cognition during smoking abstinence. Biol Psychiatry 65:144–149

    Article  PubMed  CAS  Google Scholar 

  • Pavlov VA (2008) Cholinergic modulation of inflammation. Int J Clin Exp Med 1:203–212

    PubMed  CAS  Google Scholar 

  • Pavlov VA, Ochani M, Yang LH, Gallowitsch-Puerta M, Ochani K, Lin X, Levi J, Parrish WR, Rosas-Ballina M, Czura CJ, Larosa GJ, Miller EJ, Tracey KJ, Al-Abed Y (2007) Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med 35:1139–1144

    Article  PubMed  CAS  Google Scholar 

  • Philip NS, Carpenter LL, Tyrka AR, Whiteley LB, Price LH (2009) Varenicline augmentation in depressed smokers: an 8-week, open-label study. J Clin Psychiatry 70:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Philip NS, Carpenter LL, Tyrka AR, Price LH (2010) Pharmacologic approaches to treatment resistant depression: a re-examination for the modern era. Expert Opin Pharmacother 11:709–722

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Addy NA, Mineur YS, Brunzell DH (2008) It is not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol 84:329–342

    Article  PubMed  CAS  Google Scholar 

  • Popik P, Kozela E, Krawczyk M (2003) Nicotine and nicotinic receptor antagonists potentiate the antidepressant-like effects of imipramine and citalopram. Br J Pharmacol 139:1196–1202

    Article  PubMed  CAS  Google Scholar 

  • Popkin MK (2008) Exacerbation of recurrent depression as a result of treatment with varenicline. Am J Psychiatry 165:774

    Article  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  CAS  Google Scholar 

  • Rabenstein RL, Caldarone BJ, Picciotto MR (2006) The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not beta2- or alpha7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacology (Berl) 189:395–401

    Article  CAS  Google Scholar 

  • Raber J, Koob GF, Bloom FE (1995) Interleukin-2 (IL-2) induces corticotropin-releasing factor (CRF) release from the amygdala and involves a nitric oxide-mediated signaling; comparison with the hypothalamic response. J Pharmacol Exp Ther 272:815–824

    PubMed  CAS  Google Scholar 

  • Rhodes ME, O’Toole SM, Wright SL, Czambel RK, Rubin RT (2001) Sexual diergism in rat hypothalamic-pituitary-adrenal axis responses to cholinergic stimulation and antagonism. Brain Res Bull 54:101–113

    Article  PubMed  CAS  Google Scholar 

  • Rohleder N, Kirschbaum C (2006) The hypothalamic-pituitary-adrenal (HPA) axis in habitual smokers. Int J Psychophysiol 59:236–243

    Article  PubMed  Google Scholar 

  • Rollema H, Guanowsky V, Mineur YS, Shrikhande A, Coe JW, Seymour PA, Picciotto MR (2009) Varenicline has antidepressant-like activity in the forced swim test and augments sertraline’s effect. Eur J Pharmacol 605:114–116

    Article  PubMed  CAS  Google Scholar 

  • Ross SA, Wong JY, Clifford JJ, Kinsella A, Massalas JS, Horne MK, Scheffer IE, Kola I, Waddington JL, Berkovic SF, Drago J (2000) Phenotypic characterization of an alpha 4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse. J Neurosci 20:6431–6441

    PubMed  CAS  Google Scholar 

  • Sabri O, Kendziorra K, Wolf H, Gertz HJ, Brust P (2008) Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 35(Suppl 1):S30–S45

    Article  PubMed  CAS  Google Scholar 

  • Salin-Pascual RJ (2002) Relationship between mood improvement and sleep changes with acute nicotine administration in non-smoking major depressed patients. Rev Invest Clin 54:36–40

    PubMed  CAS  Google Scholar 

  • Santamaria A, Arias HR (2010) Neurochemical and behavioral effects elicited by bupropion and diethylpropion in rats. Behav Brain Res 211:132–139

    Article  PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  • Schofield GG, Witkop B, Warnick JE, Albuquerque EX (1981) Differentiation of the open and closed states of the ionic channels of nicotinic acetylcholine receptors by tricyclic antidepressants. Proc Natl Acad Sci USA 78:5240–5244

    Article  PubMed  CAS  Google Scholar 

  • Semba J, Mataki C, Yamada S, Nankai M, Toru M (1998) Antidepressantlike effects of chronic nicotine on learned helplessness paradigm in rats. Biol Psychiatry 43:389–391

    Article  PubMed  CAS  Google Scholar 

  • Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg PR (2002a) Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry 7:525–535

    Article  PubMed  CAS  Google Scholar 

  • Shytle RD, Silver AA, Sheehan KH, Sheehan DV, Sanberg PR (2002b) Neuronal nicotinic receptor inhibition for treating mood disorders: preliminary controlled evidence with mecamylamine. Depress Anxiety 16:89–92

    Article  PubMed  Google Scholar 

  • Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337–343

    Article  PubMed  CAS  Google Scholar 

  • Slattery DA, Morrow JA, Hudson AL, Hill DR, Nutt DJ, Henry B (2005) Comparison of alterations in c-fos and Egr-1 (zif268) expression throughout the rat brain following acute administration of different classes of antidepressant compounds. Neuropsychopharmacology 30:1278–1287

    Article  PubMed  CAS  Google Scholar 

  • Stapleton JA, Watson L, Spirling LI, Smith R, Milbrandt A, Ratcliffe M, Sutherland G (2008) Varenicline in the routine treatment of tobacco dependence: a pre-post comparison with nicotine replacement therapy and an evaluation in those with mental illness. Addiction 103:146–154

    Article  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    Article  CAS  Google Scholar 

  • Suemaru K, Yasuda K, Cui R, Li B, Umeda K, Amano M, Mitsuhashi H, Takeuchi N, Inoue T, Gomita Y, Araki H (2006) Antidepressant-like action of nicotine in forced swimming test and brain serotonin in mice. Physiol Behav 88:545–549

    Article  PubMed  CAS  Google Scholar 

  • Targacet IW-S, NC. http://www.targacept.com/wt/page/pr_1247655940 [Last Accessed 2/2010].

  • Tizabi Y, Overstreet DH, Rezvani AH, Louis VA, Clark E Jr, Janowsky DS, Kling MA (1999) Antidepressant effects of nicotine in an animal model of depression. Psychopharmacology (Berl) 142:193–199

    Article  CAS  Google Scholar 

  • Tonstad S, Davies S, Flammer M, Russ C, Hughes J (2010) Psychiatric adverse events in randomized, double-blind, placebo-controlled clinical trials of varenicline: a pooled analysis. Drug Saf 33:289–301

    Article  PubMed  CAS  Google Scholar 

  • Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ, Shores-Wilson K, Biggs MM, Balasubramani GK, Fava M (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163:28–40

    Article  PubMed  Google Scholar 

  • Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53:865–871

    Article  PubMed  Google Scholar 

  • Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm K, Wedgwood L, Niven H, Kay-Lambkin F (2006) Smoking cessation and depression: current knowledge and future directions. Drug Alcohol Rev 25:97–107

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by NIMH T32MH067553

Conflict of interest statement

The authors attest, to the best of their knowledge, that they have no conflicts of interest in relation to this article to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah S. Philip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philip, N.S., Carpenter, L.L., Tyrka, A.R. et al. Nicotinic acetylcholine receptors and depression: a review of the preclinical and clinical literature. Psychopharmacology 212, 1–12 (2010). https://doi.org/10.1007/s00213-010-1932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1932-6

Keywords

Navigation