Skip to main content
Log in

Neuroimaging of mirtazapine enantiomers in humans

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

Mirtazapine is a racemic antidepressant with a multireceptor profile. Previous studies have shown that the enantiomers of mirtazapine have different pharmacologic effects in the brain of laboratory animals.

Materials and methods

In the present study, we used positron emission tomography (PET) and autoradiography to study effects of (R)- and (S)-[11C]mirtazapine in the human brain. Detailed brain imaging by PET using three methods of kinetic data analysis showed no reliable differences between regional binding potentials of (R)- and (S)-[11C]mirtazapine in healthy subjects.

Results

Autoradiographic studies carried out in whole hemispheres of human brain tissue showed, however, that (R)- and (S)-mirtazapine differ markedly as inhibitors of [3H]clonidine binding at α2-adrenoceptors.

Conclusion

The multireceptor binding profiles of mirtazapine enantiomers, along with individual differences between subjects, may preclude PET neuroimaging from demonstrating reliable differences between the regional distribution and binding of (R)- and (S)-[11C]mirtazapine in the living human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Callado LF, Meana JJ, Grijalba B, Pazos A, Sastre M, Garcia-Sevilla JA (1998) Selective increase of alpha2A-adrenoceptor agonist binding sites in brains of depressed suicide victims. J Neurochem 70:1114–1123

    Article  PubMed  CAS  Google Scholar 

  • Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) Automated multimodality image registration using information theory. In: Bizais Y, Barillot C, DiPaola R (eds) Information processing in medical imaging. Kluwer, Dordrecht, pp 263–274

    Google Scholar 

  • Collins DL, Neelin P, Peter TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205

    Article  PubMed  CAS  Google Scholar 

  • Comtat C, Bataille F, Michel C, Jones JP, Sibomana M, Janeiro L, Frebossen R (2004) OSEM-3D reconstruction strategies for the ECAT HRRT. Nuclear Science Symposium Conference Record, 2004. IEEE 6:3492–3496

    Google Scholar 

  • de Boer T (1996) The pharmacologic profile of mirtazapine. J Clin Psychiatry 57(Suppl 4):19–25

    PubMed  Google Scholar 

  • de Boer TH, Maura G, Raiteri M, de Vos CJ, Wieringa J, Pinder RM (1988) Neurochemical and autonomic pharmacological profiles of the 6-aza-analogue of mianserin, Org 3770 and its enantiomers. Neuropharmacology 27:399–408

    Article  PubMed  Google Scholar 

  • de Boer T, Nefkens F, van Helvoirt A (1994) The alpha2-adrenoceptor antagonist Org 3770 enhances serotonin transmission in vivo. Eur J Pharmacol 253:R5–R6

    Article  PubMed  Google Scholar 

  • de Jong HW, van Velden FH, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA (2007) Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 52:1505–1526

    Article  PubMed  Google Scholar 

  • Devoto P, Flore G, Pira L, Longu G, Gessa GL (2004) Mirtazapine-induced corelease of dopamine and noradrenaline from noradrenergic neurons in the medial prefrontal and occipital cortex. Eur J Pharmacol 487:105–111

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Haddjeri N, Blier P, de Montigny C (1996) Effect of the alpha-2 adrenoceptor antagonist mirtazapine on the 5-hydroxytryptamine system in the rat brain. J Pharmacol Exp Ther 277:861–871

    PubMed  CAS  Google Scholar 

  • Hall H, Halldin C, Farde L, Sedvall G (1998) Whole hemisphere autoradiography of the postmortem human brain. Nucl Med Biol 25:715–719

    Article  PubMed  CAS  Google Scholar 

  • Hall H, Hurd Y, Pauli S, Halldin C, Sedvall G (2001) Human brain imaging post-mortem— whole hemisphere technologies. Int Rev Psychiat Res Meth Biol Psychiat 13:12–17

    CAS  Google Scholar 

  • Kooyman AR, Zwart R, Vanderheijden PM, Van Hooft JA, Vijverberg HP (1994) Interaction between enantiomers of mianserin and ORG3770 at 5-HT3 receptors in cultured mouse neuroblastoma cells. Neuropharmacology 33:501–507

    Article  PubMed  CAS  Google Scholar 

  • Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  • Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840

    Article  PubMed  CAS  Google Scholar 

  • Marthi K, Bender D, Gjedde A, Smith D (2002) [11C]Mirtazapine for PET neuroimaging: radiosynthesis and initial evaluation in the living porcine brain. Eur Neuropsychopharmacol 12:427–432

    Article  PubMed  CAS  Google Scholar 

  • Marthi K, Jakobsen S, Bender D, Hansen SB, Smith SB, Hermansen F, Rosenberg R, Smith DF (2004) [N-methyl-11C]Mirtazapine for positron emission tomography neuroimaging of antidepressant actions in humans. Psychopharmacology (Berl) 174:260–265

    Article  CAS  Google Scholar 

  • Montgomery SA, Baldwin DS, Blier P, Fineberg NA, Kasper S, Lader M, Lam RW, Lepine JP, Moller HJ, Nutt DJ, Rouillon F, Schatzberg AF, Thase ME (2007) Which antidepressants have demonstrated superior efficacy? A review of the evidence. Int Clin Psychopharmacol 22:323–329

    Article  PubMed  Google Scholar 

  • Piletz JE, Ordway GA, Zhu H, Duncan BJ, Halaris A (2000) Autoradiographic comparison of [3H]-clonidine binding to non-adrenergic sites and alpha2-adrenergic receptors in human brain. Neuropsychopharmacology 23:697–708

    Article  PubMed  CAS  Google Scholar 

  • Piletz JE, Ordway GA, Rajkowska G, Zhu H, Klimek V, Swilley S, Duncan BJ, May W, Halaris AE (2003) Differential expression of alpha2-adrenoceptor vs. imidazoline binding sites in postmortem orbitofrontal cortex and amygdala of depressed subjects. J Psychiatr Res 37:399–409

    Article  PubMed  Google Scholar 

  • Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  PubMed  CAS  Google Scholar 

  • Smith DF, Jakobsen S (2007) Stereoselective neuroimaging in vivo. Eur Neuropsychopharmacol 17:507–522

    Article  PubMed  CAS  Google Scholar 

  • Smith DF, Dyve S, Minuzzi L, Jakobsen S, Munk OL, Marthi K, Cumming P (2006a) Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain. Synapse 59:463–471

    Article  PubMed  CAS  Google Scholar 

  • Smith DF, Marthi K, Munk OL, Cumming P, Hansen SB, Jakobsen S (2006b) PET neuroimaging of [11C]mirtazapine enantiomers in pigs. Eur Neuropsychopharmacol 16:350–357

    Article  PubMed  CAS  Google Scholar 

  • Szegedi A, Schwertfeger N (2005) Mirtazapine: a review of its clinical efficacy and tolerability. Expert Opin Pharmacother 6:631–641

    Article  PubMed  CAS  Google Scholar 

  • Tomita M (1988) Significance of cerebral blood volume. In: Tomita, M, Sawada, T, Naritomi H, Heiss, WD (eds) Cerebral hyperemia and ischemia: from the standpoint of cerebral blood volume. Elsevier Science, Amsterdam, pp 3–31

    Google Scholar 

  • Unnerstall JR, Kopajtic TA, Kuhar MJ (1984) Distribution of alpha2 agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res 319:69–101

    PubMed  CAS  Google Scholar 

  • Wikstrom HV, Mensonides-Harsema MM, Cremers TI, Moltzen EK, Arnt J (2002) Synthesis and pharmacological testing of 1,2,3,4,10,14b-hexahydro-6-methoxy-2-methyldibenzo[c,f]pyrazino[1,2-a]azepine and its enantiomers in comparison with the two antidepressants mianserin and mirtazapine. J Med Chem 45:3280–3285

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Endres CJ, Brasic JR, Huang SC, Wong DF (2003) Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model. Neuroimage 18:975–989

    Article  PubMed  Google Scholar 

  • Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Organon, Oss, Holland for generous supplies of unlabeled mirtazapine enantiomers, Alexandra Tylec of Karolinska Institutet for help with autoradiographic experiments, and the Danish Medical Research Council for financial support. The authors have no conflicts of interest related to these research findings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald F. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.F., Hansen, S.B., Jakobsen, S. et al. Neuroimaging of mirtazapine enantiomers in humans. Psychopharmacology 200, 273–279 (2008). https://doi.org/10.1007/s00213-008-1208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1208-6

Keywords

Navigation