Skip to main content
Log in

Effects of tryptophan deficiency on prepulse inhibition of the acoustic startle in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Serotonin (5-HT) plays a key role in the pathophysiology of psychotic disorders, presumably through a modulation of dopamine (DA) transmission. Reduction of 5-HT signaling has been suggested to enhance dopaminergic responses in animal models of psychosis. An intriguing naturalistic strategy to reduce 5-HT brain content is afforded by the dietary restriction to its precursor, l-tryptophan (TRP).

Objective

We investigated the impact of a TRP-deficient diet in rats on the prepulse inhibition of the startle (PPI), a measure of sensorimotor gating which is typically impaired by psychotomimetic substances.

Materials and methods

After either short-term (6 h) or long-term (14 days) TRP deprivation, rats were tested for startle reflex and PPI. Moreover, we assessed the impact of both TRP deprivation regimens on PPI reduction induced by the psychotomimetic substance d-amphetamine (AMPH).

Results

Both TRP-deficient regimens failed to significantly affect PPI responses. However, chronic, but not short-term, TRP-deficient diet induced a significant sensitization to the effects of AMPH (1.25–2.5 mg/kg, subcutaneous). The enhanced predisposition to PPI disruption elicited by prolonged TRP deprivation was completely reversed 24 h after reinstatement of TRP in the diet, as well as pretreatment with antipsychotic drugs haloperidol (0.1 mg/kg, intraperitoneal) and clozapine (5 mg/kg, intraperitoneal), which exert their therapeutic action mostly through blockade of DA D2 receptors.

Conclusions

The present results confirm and extend previous findings on the impact of serotonergic signaling in the modulation of DA transmission in schizophrenia and point to chronic TRP deprivation as a potential model of environmental manipulation that may produce a sensitization to psychotic-like symptoms induced by dopaminergic activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Krystal J (1997) The role of serotonin in the pathophysiology and treatment of schizophrenia. J Neuropsychiatry Clin Neurosci 9:1–17

    PubMed  CAS  Google Scholar 

  • Adell A, Myers RD (1995) Synthesis of dopamine and 5-HT in anatomical regions of the rat’s brain is unaffected by sustained infusion of amperozide. Pharmacol Toxicol 77:341–345

    PubMed  CAS  Google Scholar 

  • Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589

    PubMed  CAS  Google Scholar 

  • Asin KE, Fibiger HC (1983) An analysis of neuronal elements within the median nucleus of the raphe that mediate lesion-induced increases in locomotor activity. Brain Res 268:211–223

    Article  PubMed  CAS  Google Scholar 

  • Auclair A, Drouin C, Cotecchia S, Glowinski J, Tassin JP (2004a) 5-HT2A and alpha1b-adrenergic receptors entirely mediate dopamine release, locomotor response and behavioural sensitization to opiates and psychostimulants. Eur J Neurosci 20:3073–3084

    Article  PubMed  Google Scholar 

  • Auclair A, Blanc G, Glowinski J, Tassin JP (2004b) Role of serotonin 2A receptors in the d-amphetamine-induced release of dopamine:comparison with previous data on alpha1b-adrenergic receptors. J Neurochem 91:318–26

    Article  PubMed  CAS  Google Scholar 

  • Biggio G, Fadda F, Fanni P, Tagliamonte A, Gessa GL (1974) Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci 14:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS, Swerdlow NR (2001) Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res 49:171–178

    Article  PubMed  CAS  Google Scholar 

  • Branchey L, Branchey M, Worner TM, Zucker D, Shaw S, Lieber CS (1985) Association between amino acid alterations and hallucinations in alcoholic patients. Biol Psychiatry 20(11):1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Brezun JM, Daszuta A (1999) Depletion is serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89:899–1002

    Article  Google Scholar 

  • Cahir M, Ardis T, Reynolds GP, Cooper SJ (2007) Acute and chronic tryptophan depletion differentially regulate central 5-HT1A and 5-HT 2A receptor binding in the rat. Psychopharmacology 190:497–506

    Article  PubMed  CAS  Google Scholar 

  • Caine SB, Humby T, Robbins TW, Everitt BJ (2001) Behavioral effects of psychomotor stimulants in rats with dorsal or ventral subiculum lesions: locomotion, cocaine self-administration, and prepulse inhibition of startle. Behav Neurosci 155:880–894

    Article  Google Scholar 

  • Carta M, Fadda F, Stancampiano R (2006) Tryptophan-deficient diet increases the neurochemical and behavioral response to amphetamine. Brain Res 1094:86–91

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ, Baker HF, Cross AJ, Joseph MH, Lofthouse R, Longden A, Owen F, Riley GJ, Glover V, Killpack WS (1979) Monoamine mechanisms in chronic schizophrenia: post-mortem neurochemical findings. Br J Psychiatry 134:249–256

    Article  PubMed  CAS  Google Scholar 

  • De Deurwaerdere P, Spampinato U (1999) Role of serotonin(2A) and serotonin(2B/2C) receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 73:1033–1042

    Article  PubMed  Google Scholar 

  • Fadda F (2000) Tryptophan-free diets: a physiological tool to study brain serotonin function. New Physiol Sci 15:260–264

    CAS  Google Scholar 

  • Fadda F, Concu A, Carcassi AM, Piras MB, Liguori G (1975) [Effect of the administration of corn and geletin on cerebral levels of serotonin in rats]. Boll Soc Ital Biol Sper 51:951–954

    PubMed  CAS  Google Scholar 

  • Fadda F, Cocco S, Stancampiano R (2000) A physiological method to selectively decrease brain serotonin release. Brain Res Brain Res Protoc 5:219–222

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom JD, Wurtman RJ (1971) Effect of chronic corn consumption on serotonin content of rat brain. Nature New Biol 234:62–64

    PubMed  CAS  Google Scholar 

  • Fletcher PJ, Selhi ZF, Azampanah A, Sills TL (2001) Reduced brain serotonin activity disrupts prepulse inhibition of the acoustic startle reflex. Effects of 5,7-dihydroxytryptamine and p-chlorophenylalanine. Neuropsychopharmacology 24:399–409

    Article  PubMed  CAS  Google Scholar 

  • Franklin M, Cowen PJ (2001) Effect of a low tryptophan diet on the prolactin responses to the 5-HT2A agonist DOI in the rat. Pharmacopsychiatry 34:147–149

    Article  PubMed  CAS  Google Scholar 

  • Franklin M, Craven RD, Dowling B, Campling G, Elliott JM, Cowen PJ (1999) Effect of a long-term low tryptophan diet on the prolactin responses to the 5-HT1A and 5-HT2C agonists, 8-OH-DPAT and mCPP in the male rat. J Psychopharmacol 13:58–63

    PubMed  CAS  Google Scholar 

  • Gessa GL, Biggio G, Fadda F, Corsini GU, Tagliamonte A (1975) Tryptophan-free diet: a new means for rapidly decreasing brain tryptophan content and serotonin synthesis. Acta Vitaminol Enzymol 29:72–78

    PubMed  CAS  Google Scholar 

  • Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York. pp 787–798

    Google Scholar 

  • Geyer MA, Swerdlow NR, Mansbach RS, Braff DL (1990) Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull 25:485–498

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  PubMed  CAS  Google Scholar 

  • Graham FK (1975) The more or less startling effects of weak prestimulation. Psychophysiology 1:238–248

    Article  Google Scholar 

  • Irwin MR, Marder SR, Fuentenebro F, Yuwiler A (1987) L-5-hydroxytryptophan attenuates positive psychotic symptoms induced by d-amphetamine. Psychiatry Res 22:283–289

    Article  PubMed  CAS  Google Scholar 

  • Jospeh MH, Baker HF, Crow TJ, Riley GJ, Risby D (1979) Brain tryptophan metabolism in schizophrenia: a post mortem study of metabolites of the serotonin and kynurenine pathways in schizophrenic and control subjects. Psychopharmacology 62:279–285

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Remington G (1996) Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 153:466–476

    PubMed  CAS  Google Scholar 

  • Kapur S, Seeman P (2001) Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 158:360–369

    Article  PubMed  CAS  Google Scholar 

  • Kelly PH, Seviour P, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522

    Article  PubMed  CAS  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–28

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Schnitzler HU (1997) The acoustic startle response in rats—circuits mediating evocation, inhibition and potentiation. Behav Brain Res 89:35–49

    Article  PubMed  CAS  Google Scholar 

  • Kusljic S, Copolov DL, van den Buuse M (2003) Differential role of serotonergic projections arising from the dorsal and median raphe nuclei in locomotor hyperactivity and prepulse inhibition. Neuropsychopharmacology 28:2138–2147

    PubMed  CAS  Google Scholar 

  • Kusljic S, Brosda J, van den Buuse M (2006) Effects of haloperidol and clozapine on sensorimotor gating deficits induced by 5-hydroxytryptamine depletion in the brain. Br J Pharmacol 147:800–807

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA, Braff DL (1988) Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology 94:507–514

    Article  PubMed  CAS  Google Scholar 

  • McQuade R, Sharp T (1997) Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. J Neurochem 69:791–796

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY (1995) Role of serotonin in the action of atypical antipsychotic drugs. Clin Neurosci 3:64–75

    PubMed  CAS  Google Scholar 

  • Mokler DJ, Lariviere D, Johnson DW, Theriault NL, Bronzino JD, Dixon M, Morgane PJ (1998) Serotonin neuronal release from dorsal hippocampus following electrical stimulation of the dorsal and median raphe nuclei in conscious rats. Hippocampus 8:262–273

    Article  PubMed  CAS  Google Scholar 

  • Phillips MA, Oxtoby EK, Langley RW, Bradshaw CM, Szabadi E (2000) Effects of acute tryptophan depletion on prepulse inhibition of the acoustic startle (eyeblink) response and the N1/P2 auditory evoked response in man. J Psychopharmacol 14:258–265

    PubMed  CAS  Google Scholar 

  • Prinssen EP, Colpaert FC, Koek W (2002a) 5-HT1A receptor activation and anti-cataleptic effects: high-efficacy agonists maximally inhibit haloperidol-induced catalepsy. Eur J Pharmacol 453:217–221

    Article  PubMed  CAS  Google Scholar 

  • Prinssen EP, Assié MB, Koek W, Kleven MS (2002b) Depletion of 5-HT disrupts prepulse inhibition in rats: dependence on the magnitude of depletion, and reversal by a 5-HT precursor. Neuropsychopharmacology 26:340–347

    Article  PubMed  CAS  Google Scholar 

  • Rabey JM, Vardi J, Askenazi JJ, Streifler M (1977) l-Tryptophan administration in l-dopa-induced hallucinations in elderly Parkinsonian patients. Gerontology 23(6):438–444

    Article  PubMed  CAS  Google Scholar 

  • Randrup A, Munkvad I (1964) On the relation of tryptaminicand serotonergic mechanisms to amphetamine-induced abnormal behaviour. Acta Pharmacol Toxicol 21:272–282

    Article  CAS  Google Scholar 

  • Richter-Liven G, Acsády L, Freund TF, Segal M (1994) Differential effects of serotonin and raphe grafts in the hippocampus and hypothalamus: a combined behavioural and anatomical study in the rat. Eur J Neurosci 6:1720–1728

    Article  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Salomon L, Lanteri C, Godeheu G, Blanc G, Gingrich J, Tassin JP (2007) Paradoxical constitutive behavioral sensitization to amphetamine in mice lacking 5-HT2A receptors. Psychopharmacology 194:11–20

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiatry 47:27–38

    PubMed  Google Scholar 

  • Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–677

    Article  PubMed  CAS  Google Scholar 

  • Stancampiano R, Melis F, Sarais L, Cocco S, Cugusi C, Fadda F (1997) Acute administration of a tryptophan-free amino acid mixture decreases 5-HT release in rat hippocampus in vivo. Am J Physiol 272:991–994

    Google Scholar 

  • Swerdlow NR, Geyer MA (1993) Clozapine and haloperidol in an animal model of sensorimotor gating deficits in schizophrenia. Pharmacol Biochem Behav 44:741–744

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24:285–301

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Vaccarino FJ, Amalric M, Koob GF (1986) The neural substrates for the motor-activating properties of psychostimulants: a review of recent findings. Pharmacol Biochem Behav 25:233–248

    Article  Google Scholar 

  • Swerdlow NR, Keith VA, Braff DL, Geyer MA (1991) Effects of spiperone, raclopride, SCH 23390 and clozapine on apomorphine inhibition of sensorimotor gating of the startle response in the rat. J. Pharmacol Exp Ther 256:530–536

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156:194–215

    Article  PubMed  CAS  Google Scholar 

  • Ueda S, Sakakibara S, Yoshimoto K (2005) Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning. Neuroscience 135:395–402

    Article  PubMed  CAS  Google Scholar 

  • van der Mast RC, Fekkes D, Moleman P, Pepplinkhuizen L (1991) Is postoperative delirium related to reduced plasma tryptophan? Lancet. 338:851–852

    Article  PubMed  Google Scholar 

  • van der Mast RC, van den Broek WW, Fekkes D, Pepplinkhuizen L, Habbema JD (2000) Is delirium after cardiac surgery related to plasma amino acids and physical condition? J Neuropsychiatry Clin Neurosci 12:57–63

    PubMed  Google Scholar 

  • Walters JK, Davis M, Sheard MH (1979) Tryptophan-free diet: effects on the acoustic startle reflex in rats. Psychopharmacology 62:103–109

    Article  PubMed  CAS  Google Scholar 

  • Widerlöv E (1988) A critical appraisal of CSF monoamine metabolite studies in schizophrenia. Ann NY Acad Sci 537:309–323

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bortolato.

Additional information

Fabio Fadda and Roberto Stancampiano contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortolato, M., Frau, R., Orrù, M. et al. Effects of tryptophan deficiency on prepulse inhibition of the acoustic startle in rats. Psychopharmacology 198, 191–200 (2008). https://doi.org/10.1007/s00213-008-1116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1116-9

Keywords

Navigation