Skip to main content
Log in

Factors producing a menopausal depressive-like state in mice following ovariectomy

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Bilateral ovariectomy in female mice produces a menopausal depressive-like state but the factors responsible for the phenomenon are unknown.

Objectives

We elucidated methodological issues related to establishing this mouse model and investigated a possible mechanism underlying the depressive-like state of ovariectomized mice.

Methods

We removed both ovaries of female ICR mice at 9 weeks of age. Changes in the immobility time during the forced swimming test as a function of the time interval between ovariectomy and behavioral testing were determined on nine different days after surgery. To assess behavioral specificity, the elevated plus-maze (EPM) behavior and spontaneous activity were measured. With respect to the effect of ovariectomy on the immobility time, we compared ICR mice with three other strains of mice (C57BL/6J, DBA/2N, and CD-1). Finally, we investigated the effects of (−)-2,5-dimethoxy-4-iodoamphetamine (DOI) and (±)-8-hydroxy-2-(N,N-di-n-propylamino) tetralin (8-OH-DPAT) on the immobility time of ovariectomized mice.

Results

A significant effect on the prolongation of immobility was observed between 12 and 18 days after ovariectomy. Ovariectomy did not alter either the EPM behavior or spontaneous activity. Of the four strains of mice, only DBA mice did not show any significant prolongation of immobility after ovariectomy. Acute or chronic treatment with DOI (0.5 or 1.0 mg kg−1) significantly prevented the prolongation of immobility time, whereas acute and chronic treatments with 8-OH-DPAT (0.05, 0.5, or 1.0 mg kg−1) were ineffective.

Conclusion

The present findings have potentially important implications for evaluating a candidate substance for the management of mood disorders in menopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcaro A, Cabib S, Ventura R, Puglisi-Allegra S (2002) Genotype- and experience-dependent susceptibility to depressive-like responses in the forced-swimming test. Psychopharmacology (Berl) 164:138–143

    Article  CAS  Google Scholar 

  • Alonso SJ, Castellano MA, Afonso D, Rodriguez M (1991) Sex differences in behavioral despair: relationships between behavioral despair and open field activity. Physiol Behav 49:69–72

    Article  PubMed  CAS  Google Scholar 

  • Bachmann GA (2005) Menopausal vasomotor symptoms: a review of causes, effects and evidence-based treatment options. J Reprod Med 50:155–165

    PubMed  Google Scholar 

  • Barros HM, Ferigolo M (1998) Ethopharmacology of imipramine in the forced swimming test: gender differences. Neurosci Biobehav Rev 23:279–286

    Article  PubMed  CAS  Google Scholar 

  • Bekku N, Yoshimura H (2005) Animal model of menopausal depressive-like state in female mice: prolongation of immobility time in the forced swimming test following ovariectomy. Psychopharmacology (Berl) 183:300–307

    Article  CAS  Google Scholar 

  • Berendsen HH, Kloosterboer HJ (2003) Oestradiol and mirtazapine restore the disturbed tail-temperature of oestrogen-deficient rats. Eur J Pharmacol 482:329–333

    Article  PubMed  CAS  Google Scholar 

  • Biala G (1998) Antidepressant-like properties of some serotonin receptor ligands and calcium channel antagonists measured with the forced swimming test in mice. Pol J Pharmacol 50:117–124

    PubMed  CAS  Google Scholar 

  • Blanchard RJ, Shepherd JK, Armstrong J, Tsuda SF, Blanchard DC (1993) An ethopharmacological analysis of the behavioral effects of 8-OH-DPAT. Psychopharmacology (Berl) 112:55–65

    Article  CAS  Google Scholar 

  • Borsini F (1995) Role of the serotonergic system in the forced swimming test. Neurosci Biobehav Rev 19:377–395

    Article  PubMed  CAS  Google Scholar 

  • Bourin M, Redrobe JP, Baker GB (1998) Pindolol does not act only on 5-HT1A receptors in augmenting antidepressant activity in the mouse forced swimming test. Psychopharmacology (Berl) 136:226–234

    Article  CAS  Google Scholar 

  • Bourin M, Fiocco AJ, Clenet F (2001) How valuable are animal models in defining antidepressant activity? Hum Psychopharmacol Clin Exp 16:9–21

    Article  CAS  Google Scholar 

  • Bourin M, Masse F, Hascoet M (2005) Evidence for the activity of lamotrigine at 5-HT1A receptors in the mouse forced swimming test. J Psychiatry Neurosci 30:275–282

    PubMed  Google Scholar 

  • Cooper RL, Goldman JM, Vandenbergh JG (1993) Monitoring of the estrous cycle in the laboratory rodent by vaginal lavage. Methods Toxicol 3B:45–56

    Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  PubMed  CAS  Google Scholar 

  • David DJP, Renard CE, Jolliet P, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 166:373–382

    CAS  Google Scholar 

  • De Vry J (1995) 5-HT1A receptor agonists: recent developments and controversial issues. Psychopharmacology (Berl) 121:1–26

    Article  Google Scholar 

  • Detke MJ, Lucki I (1996) Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res 73:43–46

    Article  PubMed  CAS  Google Scholar 

  • Einat H, Clenet F, Shaldubina A, Belmaker RH, Bourin M (2001) The antidepressant activity of inositol in the forced swim test involves 5-HT2 receptors. Behav Brain Res 118:77–83

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Camarena E, Fernandez-Guasti A, Lopez-Rubalcava C (2006) Participation of the 5-HT1A receptor in the antidepressant-like effect of estrogens in the forced swimming test. Neuropsychopharmacol 31:247–255

    Article  CAS  Google Scholar 

  • Feld J, Halbreich U, Karkun S (2005) The association of perimenopausal mood disorders with other reproductive-related disorders. CNS Spectr 10:461–470

    PubMed  Google Scholar 

  • Finger FW (1969) Estrus and general activity in the rat. J Comp Physiol Psychol 68:461–466

    Article  PubMed  CAS  Google Scholar 

  • Fink G, Sumner BE, McQueen JK, Wilson H, Rosie R (1998) Sex steroid control of mood, mental state and memory. Clin Exp Pharmacol Physiol 25:764–775

    Article  PubMed  CAS  Google Scholar 

  • Goodnick PJ, Chaudry T, Artadi J, Arcey S (2000) Women’s issues in mood disorders. Expert Opin Pharmacother 1:903–916

    Article  PubMed  CAS  Google Scholar 

  • Guttman R, Lieblich I, Gross R (1975) Behavioral correlates of estrous cycle stages in laboratory mice. Behav Biol 13:127–132

    Article  PubMed  CAS  Google Scholar 

  • Imwalle DB, Gustafsson J-A, Rissman EF (2005) Lack of functional estrogen receptor-β influences anxiety behavior and serotonin content in female mice. Physiol Behav 84:157–163

    Article  PubMed  CAS  Google Scholar 

  • Kugaya A, Epperson CN, Zoghbi S, van Dyck CH, Hou Y, Fujita M, Staley JK, Garg PK, Seibyl JP, Innis RB (2003) Increase in prefrontal cortex serotonin 2A receptors following estrogen treatment in postmenopausal women. Am J Psychiatry 160:1522–1524

    Article  PubMed  Google Scholar 

  • Landry M, Di Paolo T (2003) Effect of chronic estradiol, tamoxifen or raloxifene treatment on serotonin 5-HT1A receptor. Mol Brain Res 112:82–89

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Rodgers RJ (1990) Antinociceptive effects of elevated plus-maze exposure: influence of opiate receptor manipulations. Psychopharmacology (Berl) 102:507–513

    Article  CAS  Google Scholar 

  • Lucki I, Singh A, Kreiss DS (1994) Antidepressant-like behavioral effects of serotonin receptor agonists. Neurosci Biobehav Rev 18:85–95

    Article  PubMed  CAS  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    Article  CAS  Google Scholar 

  • Maurice T, Urani A, Phan V-L, Romieu P (2001) The interaction between neuroactive steroids and σ1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res Rev 37:116–132

    Article  PubMed  CAS  Google Scholar 

  • McQueen JK, Wilson H, Fink G (1997) Estradiol-17β increases serotonin transporter (SERT) mRNA levels and density of SERT binding sites in female rat brain. Mol Brain Res 45:13–23

    Article  PubMed  CAS  Google Scholar 

  • Morgan MA, Pfaff DW (2002) Estrogen’s effects on activity, anxiety, and fear in two mouse strains. Behav Brain Res 132:85–93

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MF, Conway MW (2001) Role of 5-HT1A and 5-HT1B receptors in the mediation of behavior in the forced swim test in mice. Neuropsychopharmacol 24:391–398

    Article  CAS  Google Scholar 

  • Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 177:245–255

    Article  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn 229:327–336

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1978) “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51:291–294

    Article  PubMed  CAS  Google Scholar 

  • Raafat AM, Hofseth LJ, Li S, Bennett JM, Haslam SZ (1999) A mouse model to study the effects of hormone replacement therapy on normal mammary gland during menopause: enhanced proliferative response to estrogen in late postmenopausal mice. Endocrinology 140:2570–2580

    Article  PubMed  CAS  Google Scholar 

  • Rocha BA, Fleischer R, Schaeffer JM, Rohrer SP, Hickey GJ (2005) 17β-estradiol-induced antidepressant-like effect in the forced swim test is absent in estrogen receptor-β knockout (BERKO) mice. Psychopharmacology (Berl) 179:637–643

    Article  CAS  Google Scholar 

  • Redrobe JP, Bourin M (1997) Partial role of 5-HT2 and 5-HT3 receptors in the activity of antidepressants in the mouse forced swimming test. Eur J Pharmacol 325:129–135

    Article  PubMed  CAS  Google Scholar 

  • Ripoll N, David DJP, Dailly E, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 143:193–200

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Shepherd JK (1993) Influence of prior maze experience on behaviour and response to diazepam in the elevated plus-maze and light/dark tests of anxiety in mice. Psychopharmacology (Berl) 113:237–242

    Article  CAS  Google Scholar 

  • Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J, Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288:321–333

    Article  PubMed  CAS  Google Scholar 

  • Sipe K, Leventhal L, Burroughs K, Cosmi S, Johnston GH, Deecher DC (2004) Serotonin 2A receptors modulate tail-skin temperature in two rodent models of estrogen deficiency-related thermoregulatory dysfunction. Brain Res 1028:191–202

    Article  PubMed  CAS  Google Scholar 

  • Sloan DM, Kornstein SG (2003) Gender differences in depression and response to antidepressant treatment. Psychiatr Clin North Am 26:581–594

    Article  PubMed  Google Scholar 

  • Sumner BE, Fink G (1998) Testosterone as well as estrogen increases serotonin 2A receptor mRNA and binding site densities in the male rat brain. Mol Brain Res 59:205–214

    Article  PubMed  CAS  Google Scholar 

  • Urani A, Chourbaji S, Gass P (2005) Mutant mouse models of depression: Candidate genes and current mouse lines. Neurosci Biobehav Rev 29:805–828

    Article  PubMed  CAS  Google Scholar 

  • Willner P, Mitchell PJ (2002) The validity of animal models of predisposition to depression. Behav Pharmacol 13:169–188

    PubMed  CAS  Google Scholar 

  • Winer BJ, Brown DR, Michels KM (1991) Design and analysis of factorial experiments: completely randomized designs. In: Statistical principles in experimental design, 3rd edn. McGraw-Hill, New York, pp 284–333

  • Wong ML, Licinio J (2001) Research and treatment approaches to depression. Nat Rev Neurosci 2:343–351

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Yoshimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekku, N., Yoshimura, H. & Araki, H. Factors producing a menopausal depressive-like state in mice following ovariectomy. Psychopharmacology 187, 170–180 (2006). https://doi.org/10.1007/s00213-006-0395-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0395-2

Keywords

Navigation