Skip to main content
Log in

Differential effects of clozapine and haloperidol on interval timing in the supraseconds range

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The effects of clozapine (0.6, 1.2, and 2.4 mg/kg) and haloperidol (0.03, 0.06, and 0.12 mg/kg) on the timing of 10, 30, and 90-s intervals were characterized in rats. Each drug's effect on timing behavior was assessed following intraperitoneal injections using a variant of the peak-interval procedure. Although haloperidol proportionately shifted peak times rightward in a manner consistent with a decrease in clock speed, clozapine exerted the opposite effect and proportionately shifted peak times leftward in a manner consistent with an increase in clock speed. These results support the proposal that typical antipsychotic drugs such as haloperidol and atypical antipsychotic drugs such as clozapine exert differential effects on dopaminergic, serotonergic, and glutamatergic systems within the cortex and striatum, two brain regions shown to be crucial for interval timing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36:589–599

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Al-Zahrani SS, Ho MY, Velazquez Martinez DN, Lopez Cabrera M, Bradshaw CM, Szabadi E (1996) Effect of destruction of the 5-hydroxytryptaminergic pathways on behavioural timing and “switching” in a free-operant psychophysical procedure. Psychopharmacology (Berl) 127:346–352

    Article  CAS  Google Scholar 

  • Arvanov VL, Wang RY (1998) MDL 100907, a selective 5-HT2A receptor antagonist and a potential antipsychotic drug, facilitates NMDA-receptor mediated neurotransmission in the rat medial prefrontal cortical neurons in vitro. Neuropsychopharmacology 18:197–209

    Article  PubMed  CAS  Google Scholar 

  • Arvanov VL, Wang RY (1999) Clozapine, but not haloperidol, prevents the functional hyperactivity of N-methyl-d-aspartate receptors in rat cortical neurons induced by subchronic administration of phencyclidine. J Pharmacol Exp Ther 289:1000–1006

    PubMed  CAS  Google Scholar 

  • Arvanov VL, Liang X, Schwartz J, Grossman S, Wang RY (1997) Clozapine and haloperidol modulate N-methyl-d-aspartate- and non-N-methyl-d-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro. J Pharmacol Exp Ther 282:226–234

    Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    Article  PubMed  CAS  Google Scholar 

  • Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, Schmauss C, Zakharenko SS, Zablow L, Sulzer D (2004) Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 42:653–663

    Article  PubMed  CAS  Google Scholar 

  • Beiser DG, Houk JC (1998) Model of cortical–basal ganglionic processing: encoding the serial order of sensory events. J Neurophysiol 79:3168–3188

    PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Bizo L, White KG (1994) The behavioral theory of timing: reinforcer rate determine pacemaker rate. J Exp Anal Behav 61:19–33

    Article  PubMed  CAS  Google Scholar 

  • Body S, Kheramin S, Ho M-Y, Miranda F, Bradshaw CM, Szabadi E (2003) Effects of a 5-HT2 receptor agonist, DOI (2,5-dimethoxy-4-iodoamphetamine), and antagonist, ketanserin, on the performance of rats on a free-operant timing schedule. Behav Pharmacol 14:599–607

    Article  PubMed  CAS  Google Scholar 

  • Body S, Kheramin S, Ho M-Y, Miranda Herrera F, Bradshaw CM, Szabadi E (2004) Effects of fenfluramine on free-operant timing behaviour: evidence for involvement of 5-HT2A receptors. Psychopharmacology (Berl) 176:154–165

    Article  CAS  Google Scholar 

  • Brown SM, Kieffaber PD, Vohs JL, Carroll CA, Tracy JA, Shekhar A, O'Donnell BF, Steinmetz JE, Hetrick WP (2005) Eye-blink conditioning deficits indicate timing and cerebellar abnormalities in schizophrenia. Brain Cogn 58:94–108

    Article  PubMed  CAS  Google Scholar 

  • Buhusi CV (2003) Dopaminergic mechanisms of interval timing and attention. In: Meck WH (ed) Functional and neural mechanisms of interval timing. CRC Press, Boca Raton, pp 317–338

    Google Scholar 

  • Buhusi CV, Meck WH (2002) Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci 116:291–297

    Article  PubMed  CAS  Google Scholar 

  • Catania AC (1970) Reinforcement schedules and psychophysical judgements: a study of some temporal properties of behavior. In: Schoenfeld WN (ed) The theory of reinforcement schedules. Appleton-Century-Croft, New York, pp 1–42

    Google Scholar 

  • Centonze D, Usiello A, Costa C, Picconi B, Erbs E, Bernardi G, Borrelli E, Calabresi P (2004) Chronic haloperidol promotes corticostriatal long-term potentiation by targeting dopamine D2L receptors. J Neurosci 24:8214–8222

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci U S A 90:9576–9580

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Hurst RS, Altemus KL, Flores-Hernandez J, Calvert CR, Jokel ES, Grandy DK, Low MJ, Rubinstein M, Ariano MA, Levine MS (2001) Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J Neurophysiol 85:659–670

    PubMed  CAS  Google Scholar 

  • Cevik MO (2003) Effects of methamphetamine on duration discrimination. Behav Neurosci 117:774–784

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Yang CR (2002) Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex. J Neurophysiol 87:2324–2336

    PubMed  CAS  Google Scholar 

  • Church RM, Meck WH, Gibbon J (1994) Application of scalar timing theory to individual trials. J Exp Psychol Anim Behav Process 20:135–155

    Article  PubMed  CAS  Google Scholar 

  • Cilia J, Piper DC, Upton N, Hagan JJ (2001) Clozapine enhances breakpoint in common marmosets responding on a progressive ratio schedule. Psychopharmacology (Berl) 155:135–143

    Article  CAS  Google Scholar 

  • Corbit LH, Muir JL, Balleine BW (2002) The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J Neurosci 21:3251–3260

    Google Scholar 

  • Creese I, Burt D, Snyder S (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  • Czyrak A, Czepiel K, Mackowiak M, Chocyk A, Wedzony K (2003) Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res 989:42–51

    Article  PubMed  CAS  Google Scholar 

  • Daly DA, Moghaddam B (1993) Actions of haloperidol on the extracellular levels of excitatory amino acids in the prefrontal cortex and striatum of conscious rats. Neurosci Lett 152:61–64

    Article  PubMed  CAS  Google Scholar 

  • Damask SP, Bovenkerk KA, de la Pena G, Hoversten KM, Peters DB, Valentine AM, Meador-Woodruff JH (1996) Differential effects of clozapine and haloperidol on dopamine receptor mRNA expression in rat striatum and cortex. Mol Brain Res 41:241–249

    Article  PubMed  CAS  Google Scholar 

  • Drew MR, Fairhurst S, Malapani C, Horvitz JC, Balsam PD (2003) Effects of dopamine antagonists on the timing of two intervals. Pharmacol Biochem Behav 75:9–15

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, Leipzig JN, Mailman RB, Lieberman JA (1998) Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation. Brain Res 812:65–75

    Article  PubMed  CAS  Google Scholar 

  • Elvevåg B, Brown GDA, McCormak T, Vousden JI, Goldberg TE (2004) Identification of tone duration, line length, and letter position: an experimental approach to timing and working memory deficits in schizophrenia. J Abnorm Psychol 113:509–521

    Article  PubMed  Google Scholar 

  • Farde K, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical antipsychotics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    PubMed  CAS  Google Scholar 

  • Fetterman JG, Killeen PR (1995) Categorical scaling of time: implications for clock-counter models. J Exp Psychol Anim Behav Process 21:43–63

    Article  PubMed  CAS  Google Scholar 

  • Futton B, Goa KL (1997) Olanzapine. Drugs 53:281–298

    Article  PubMed  Google Scholar 

  • Gallistel CR, Davis AJ (1983) Affinity for the dopamine D2 receptor predicts neuroleptic potency in blocking the reinforcing effect of MFB stimulation. Pharmacol Biochem Behav 19:867–872

    Article  PubMed  CAS  Google Scholar 

  • Gallistel CR, King A, McDonald R (2004) Sources of variability and systematic error in mouse timing behavior. J Exp Psychol Anim Behav Process 30:3–16

    Article  PubMed  CAS  Google Scholar 

  • Gemperle AY, Enz A, Pozza MF, Luthi A, Olpe HR (2003) Effects of clozapine, haloperidol and iloperidone on neurotransmission and synaptic plasticity in prefrontal cortex and their accumulation in brain tissue: an in vitro study. Neuroscience 117:681–695

    Article  PubMed  CAS  Google Scholar 

  • Gibbon J, Church RM, Meck WH (1984) Scalar timing in memory. Ann N Y Acad Sci 423:52–77

    Article  PubMed  CAS  Google Scholar 

  • Gibbon J, Malapani C, Dale CL, Gallistel CR (1997) Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol 7:170–184

    Article  PubMed  CAS  Google Scholar 

  • Goldberg TE, Weinberger DR (1994) The effects of clozapine on neurocognition: an overview. J Clin Psychiatry 55(Suppl B):88–90

    PubMed  Google Scholar 

  • Goto Y, O'Donnell P (2002) Timing-dependent limbic-motor synaptic integration in the nucleus accumbens. Proc Natl Acad Sci U S A 99:13189–13193

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Galis-de Graaf Y, Smeets WJ (1999) Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats. J Chem Neuroanat 16:167–185

    Article  PubMed  CAS  Google Scholar 

  • Hernandez PJ, Sadeghian K, Kelley AE (2002) Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nat Neurosci 5:1327–1331

    Article  PubMed  CAS  Google Scholar 

  • Hinton SC, Meck WH (1997) How time flies: functional and neural mechanisms of interval timing. In: Bradshaw CM, Szabadi E (eds) Time and behaviour: psychological and neurobiological analyses. Elsevier, New York, pp 409–457

    Chapter  Google Scholar 

  • Hinton SC, Meck WH (2004) Frontal–striatal circuitry activated by human peak-interval timing in the supra-seconds range. Cogn Brain Res 21:171–182

    Article  Google Scholar 

  • Ho MY, al-Zahrani SS, Velazquez Martinez DN, Lopez Cabrera M, Bradshaw CM, Szabadi E (1995) The role of the ascending 5-hydroxytryptaminergic pathways in timing behaviour: further observations with the interval bisection task. Psychopharmacology (Berl) 120:213–219

    Article  CAS  Google Scholar 

  • Ho MY, Velazquez-Martinez DN, Bradshaw CM, Szabadi E (2002) 5-Hydroxytryptamine and interval timing behaviour. Pharmacol Biochem Behav 71:773–785

    Article  PubMed  CAS  Google Scholar 

  • Hoff AL, Faustman WO, Wieneke M, Espinoza S, Costa M, Wolkowitz O et al (1996) The effects of clozapine on symptom reduction, neurocognitive function, and clinical management in treatment-refractory state hospital schizophrenic inpatients. Neuropsychopharmacology 15:361–369

    Article  PubMed  CAS  Google Scholar 

  • Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13:400–408

    Article  PubMed  Google Scholar 

  • Killeen PR (1975) On the temporal control of behavior. Psychol Rev 82:89–115

    Article  Google Scholar 

  • Killeen PR, Fetterman JG (1988) A behavioral theory of timing. Psychol Rev 95:274–295

    Article  PubMed  CAS  Google Scholar 

  • Killeen PR, Fetterman JG, Bizo LA (1997) Time's causes. In: Bradshaw CM, Szabadi E (eds) Time and behaviour: psychological and neurobiological analyses. Elsevier, New York, pp 79–131

    Chapter  Google Scholar 

  • Killeen PR, Hall S, Bizo LA (1999) A clock not wound runs down. Behav Process 45:129–139

    Article  Google Scholar 

  • Lahti AC, Holcomb HH, Weiler MA, Medoff DR, Tamminga CA (2003) Functional effects of antipsychotic drugs: comparing clozapine with haloperidol. Biol Psychiatry 53:601–608

    Article  PubMed  CAS  Google Scholar 

  • Lara DR, Vianna MR, de Paris F, Quevedo J, Oses JP, Battastini AM, Sarkis JJ, Souza DO (2001) Chronic treatment with clozapine, but not haloperidol, increases striatal ecto-5′-nucleotidase activity in rats. Neuropsychobiology 44:99–102

    Article  PubMed  CAS  Google Scholar 

  • Leveque JC, Macias W, Rajadhyaksha A, Carlson RR, Barczak A, Kang S, Li XM, Coyle JT, Huganir RL, Heckers S, Konradi C (2000) Intracellular modulation of NMDA receptor function by antipsychotic drugs. J Neurosci 20:4011–4020

    PubMed  CAS  Google Scholar 

  • Lustig C, Meck WH (2005) Chronic treatment with haloperidol induces working memory deficits in feedback effects of interval timing. Brain Cogn 58:9–16

    Article  PubMed  Google Scholar 

  • Lustig C, Matell MS, Meck WH (2005) Not “just” a coincidence: frontal–striatal synchronization in working memory and interval timing. Memory 13:441–448

    Article  PubMed  Google Scholar 

  • MacDonald CJ, Meck WH (2003) Cortico-striatal mechanisms of interval timing and bird song: time flies and may also sing. In: Meck WH (ed) Functional and neural mechanisms of interval timing. CRC Press, Boca Raton, pp 393–418

    Google Scholar 

  • MacDonald CJ, Meck WH (2004) Systems-level integration of interval timing and reaction time. Neurosci Biobehav Rev 28:747–769

    Article  PubMed  Google Scholar 

  • Malapani C, Rakitin B, Meck WH, Deweer B, Dubois B, Gibbon J (1998) Coupled temporal memories in Parkinson's disease: a dopamine-related dysfunction. J Cogn Neurosci 10:316–331

    Article  PubMed  CAS  Google Scholar 

  • Marek GJ, Aghajanian GK (1999) 5-HT2A receptor or alpha1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol 367:197–206

    Article  PubMed  CAS  Google Scholar 

  • Maricq AV, Church RM (1983) The differential effects of haloperidol and methamphetamine on time estimation in the rat. Psychopharmacology 79:10–15

    Article  PubMed  CAS  Google Scholar 

  • Matell MS, Meck WH (1999) Reinforcement-induced within-trial resetting of an internal clock. Behav Process 45:159–171

    Article  Google Scholar 

  • Matell MS, Meck WH (2000) Neuropsychological mechanisms of interval timing behaviour. Bioessays 22:94–103

    Article  PubMed  CAS  Google Scholar 

  • Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence-detection of oscillatory processes. Cogn Brain Res 21:139–170

    Article  Google Scholar 

  • Matell MS, Meck WH, Nicolelis MAL (2003a) Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav Neurosci 117:760–773

    Article  PubMed  Google Scholar 

  • Matell MS, Meck WH, Nicolelis MAL (2003b) Integration of behavior and timing: anatomically separate systems or distributed processing? In: Meck WH (ed) Functional and neural mechanisms of interval timing. CRC Press, Boca Raton, pp 371–391

    Google Scholar 

  • Matell MS, King GR, Meck WH (2004) Differential adjustment of interval timing by the chronic administration of intermittent or continuous cocaine. Behav Neurosci 118:150–156

    Article  PubMed  CAS  Google Scholar 

  • Meck WH (1983) Selective adjustment of the speed of internal clock and memory storage processes. J Exp Psychol Anim Behav Process 9:171–201

    Article  PubMed  CAS  Google Scholar 

  • Meck WH (1986) Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol Biochem Behav 25:1185–1189

    Article  PubMed  CAS  Google Scholar 

  • Meck WH (1988) Internal clock and reward pathways share physiologically similar information-processing stages. In: Commons ML, Church RM, Stellar JR, Wagner AR (eds) Quantitative analyses of behavior: biological determinants of reinforcement, vol 7. Erlbaum, Hillsdale, NJ, pp 121–138

    Google Scholar 

  • Meck WH (1996) Neuropharmacology of timing and time perception. Cogn Brain Res 3:227–242

    Article  CAS  Google Scholar 

  • Meck WH (2003) Introduction: persistence of time. In: Meck WH (ed) Functional and neural mechanisms of interval timing. CRC Press, Boca Raton, FL, pp xvii–xli

    Google Scholar 

  • Meck WH (2005) Neuropsychology of timing and time perception. Brain Cogn 58:1–8

    Article  PubMed  Google Scholar 

  • Meck WH, Benson AM (2002) Dissecting the brain's internal clock: how frontal–striatal circuitry keeps time and shifts attention. Brain Cogn 48:195–211

    Article  PubMed  Google Scholar 

  • Meck WH, Church RM (1984) Simultaneous temporal processing. J Exp Psychol Anim Behav Process 10:1–29

    Article  PubMed  CAS  Google Scholar 

  • Meck WH, Malapani C (2004) Neuroimaging of interval timing. Cogn Brain Res 21:133–137

    Article  Google Scholar 

  • Meck WH, N'Diaye K (2005) Un modèle neurobiologique de la perception et de l'estimation du temps. Psychol Fr 50:47–63

    Google Scholar 

  • Meck WH, Church RM, Wenk GL, Olton DS (1987) Nucleus basalis magnocellularis and medial septal area lesions differentially impair temporal memory. J Neurosci 7:3505–3511

    PubMed  CAS  Google Scholar 

  • Merchant KM, Figur LM, Evans DL (1996) Induction of c-fos mRNA in rat medial prefrontal cortex by antipsychotic drugs: role of dopamine D2 and D3 receptors. Cereb Cortex 6:561–570

    Article  PubMed  CAS  Google Scholar 

  • Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E (2000) Comparison of the effects of clozapine, haloperidol, chlorpromazine and d-amphetamine on performance on a time-constrained progressive ratio schedule and on locomotor behaviour in the rat. Psychopharmacology (Berl) 152:47–54

    Article  CAS  Google Scholar 

  • Morrissey G, Ho MY, Wogar MA, Bradshaw CM, Szabadi E (1994) Effect of lesions of the ascending 5-hydroxytryptaminergic pathways on timing behaviour investigated with the fixed-interval peak procedure. Psychopharmacology (Berl) 114:463–468

    Article  CAS  Google Scholar 

  • Nguyen TV, Kosofsky BE, Birnbaum R, Cohen BM, Hyman SE (1992) Differential expression of c-fos and zif268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc Natl Acad Sci U S A 89:4270–4274

    Article  PubMed  CAS  Google Scholar 

  • Nicola SM, Surmeier DJ, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215

    Article  PubMed  CAS  Google Scholar 

  • Ninan I, Jardemark KE, Wang RY (2003) Differential effects of atypical and typical antipsychotic drugs on N-methyl-d-aspartate- and electrically evoked responses in the pyramidal cells of the rat medial prefrontal cortex. Synapse 48:66–79

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, Uppfeldt G (1993) Central D2 dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 33:227–235

    Article  PubMed  CAS  Google Scholar 

  • Olton DS, Wenk GL, Church RM, Meck WH (1988) Attention and the frontal cortex as examined by simultaneous temporal processing. Neuropsychologia 26:307–318

    Article  PubMed  CAS  Google Scholar 

  • Otani S, Daniel H, Roisin MP, Crepel F (2003) Dopaminergic modulation of long-term synaptic plasticity in rat prefrontal neurons. Cereb Cortex 13:1251–1256

    Article  PubMed  Google Scholar 

  • Pagnoni G, Zink CF, Montague PR, Berns GS (2002) Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 5:97–98

    Article  PubMed  CAS  Google Scholar 

  • Pang KCH, McAuley JD (2003) Importance of frontal motor cortex in divided attention and simultaneous temporal processing. In: Meck WH (ed) Functional and neural mechanisms of interval timing. CRC Press, Boca Raton, pp 351–369

    Google Scholar 

  • Pang KC, Yoder RM, Olton DS (2001) Neurons in the lateral agranular frontal cortex have divided attention correlates in a simultaneous temporal processing task. Neuroscience 103:615–628

    Article  PubMed  CAS  Google Scholar 

  • Paule MG, Meck WH, McMillan DE, Bateson M, Popke EJ, Chelonis JJ, Hinton SC (1999) The use of timing behaviors in animals and humans to detect drug and/or toxicant effects. Neurotoxicol Teratol 21:491–502

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249

    Article  PubMed  CAS  Google Scholar 

  • Penney TB, Meck WH, Roberts SA, Gibbon J, Erlenmeyer-Kimling L (2005) Attention mediated temporal processing deficits in subjects at high risk for schizophrenia. Brain Cogn 58:109–118

    Article  PubMed  Google Scholar 

  • Peters Y, Barnhardt NE, O'Donnell P (2004) Prefrontal cortical up states are synchronized with ventral tegmental area activity. Synapse 52:143–152

    Article  PubMed  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12:440–453

    PubMed  CAS  Google Scholar 

  • Rammsayer TH (1990) Temporal discrimination in schizophrenic and affective disorders: evidence for a dopamine-dependent internal clock. Int J Neurosci 53:111–120

    Article  PubMed  CAS  Google Scholar 

  • Rammsayer TH (1997) Are there dissociable roles of the mesostriatal and mesolimbocortical dopamine systems on temporal information processing in humans? Neuropsychobiology 35:36–45

    Article  PubMed  CAS  Google Scholar 

  • Rammsayer TH (1999) Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol 52:273–286

    Article  CAS  Google Scholar 

  • Robbins TW (2003) Dopamine and cognition. Curr Opin Neurol 16(Suppl 2):S1–S2

    Article  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236

    Article  PubMed  CAS  Google Scholar 

  • Roberts S (1981) Isolation of and internal clock. J Exp Psychol, Anim Behav Processes 7:242–268

    Article  CAS  Google Scholar 

  • Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin(1A) and serotonin(2A) receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109

    Article  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    Article  PubMed  CAS  Google Scholar 

  • Scatton B, Sanger DJ (2000) Pharmacological and molecular targets in the search for novel antipsychotics. Behav Pharmacol 11:243–256

    PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Tyson PJ, Roberts KH, Mortimer AM (2004) Are the cognitive effects of atypical antipsychotics influenced by their affinity to 5HT-2A receptors? Int J Neurosci 114:593–611

    Article  PubMed  CAS  Google Scholar 

  • Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E (2001) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203

    Google Scholar 

  • Wang J, O'Donnell P (2001) D1 dopamine receptors potentiate NMDA-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cereb Cortex 11:452–462

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Lipska BK (1995) Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 16:87–110

    Article  PubMed  CAS  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1982) Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 5:39–87

    Article  Google Scholar 

  • Xiao D, Barbas H (2004) Circuits through prefrontal cortex, basal ganglia, and ventral anterior nucleus map pathways beyond motor control. Thalamus Relat Syst 2:325–343

    Article  Google Scholar 

  • Xiberas X, Martinot JL, Mallet L, Artiges E, Loc'h C, Mazière B, Paillère-Martinot ML (2001) Extrastriatal and striatal D2 dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 179:503–508

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Pehek EA, Meltzer HY (1994) Brain region effects of clozapine on amino acid and monoamine transmission. J Clin Psychiatry 55(Suppl):8–14

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren H. Meck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, C.J., Meck, W.H. Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology 182, 232–244 (2005). https://doi.org/10.1007/s00213-005-0074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0074-8

Keywords

Navigation