Skip to main content
Log in

Activation of a nitric-oxide-sensitive cAMP pathway with phencyclidine: elevated hippocampal cAMP levels are temporally associated with deficits in prepulse inhibition

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Schizophrenic patients show deficits in pre-attentive information processing as evidenced, for example, by disrupted prepulse inhibition, a measure of sensorimotor gating. A similar disruption can be observed in animals treated with the psychotomimetic agent, phencyclidine (PCP). However, the mechanism by which PCP alters brain function has not been fully elucidated. Recent studies have demonstrated that certain behavioural and neurochemical effects of PCP in rats and mice are blocked by nitric oxide (NO) synthase inhibition, suggesting an important role for NO in the effects of PCP.

Objective

The aim of the present study was to investigate the effects of PCP on cAMP production in the ventral hippocampus and the role of NO in these effects using in vivo microdialysis in rats. Furthermore, the effects of PCP on acoustic startle reactivity and prepulse inhibition of acoustic startle were compared with changes in cAMP levels in the ventral hippocampus.

Results

Significant increases in cAMP levels were observed in the ventral hippocampus following both local infusion (10−4 mol/l and 10−3 mol/l) and systemic administration (2 mg/kg) of PCP. The PCP-induced changes in prepulse inhibition and startle reactivity were associated in magnitude and duration with the increase in cAMP levels in the hippocampus. Furthermore, systemic administration of the NO synthase inhibitor, l-NAME (10 mg/kg), blocked both the changes in cAMP levels and the behavioural responses induced by PCP.

Conclusions

These findings indicate that the effects of PCP on prepulse inhibition and startle reactivity are associated with an increase in cAMP levels in the ventral hippocampus, and that this change in cAMP response may be linked to the production of NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel T, Bourtchuladze R, Patterson SL, Barad M, Winder V, Deuel TA (1997) Transgenic mice expressing a constitutively active form of GalphaS exhibit learning deficits and enhanced synaptic transmission. Soc Neuroscience (Abstract) 23:1177

    Google Scholar 

  • Ahern GP, Klyachko VA, Jackson MB (2002) cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci 25:510–517

    CAS  PubMed  Google Scholar 

  • Ayers NA, Kapas L, Krueger JM (1997) The inhibitory effects of N omega-nitro-l-arginine methyl ester on nitric oxide synthase activity vary among brain regions in vivo but not in vitro. Neurochem Res 22:81–86

    CAS  PubMed  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    CAS  PubMed  Google Scholar 

  • Bast T, Zhang WN, Feldon J (2001) Hyperactivity, decreased startle reactivity, and disrupted prepulse inhibition following disinhibition of the rat ventral hippocampus by the GABA(A) receptor antagonist picrotoxin. Psychopharmacology (Berl) 156:225–233

    Google Scholar 

  • Bird DC, Bujas-Bobanovic M, Robertson HA, Dursun SM (2001) Lack of phencyclidine-induced effects in mice with reduced neuronal nitric oxide synthase. Psychopharmacology (Berl) 155:299–309

    Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    CAS  PubMed  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    CAS  PubMed  Google Scholar 

  • Bujas-Bobanovic M, Robertson HA, Dursun SM (2000) Effects of nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester on phencyclidine-induced effects in rats. Eur J Pharmacol 409:57–65

    Google Scholar 

  • Caine SB, Geyer MA, Swerdlow NR (1992) Hippocampal modulation of acoustic startle and prepulse inhibition in the rat. Pharmacol Biochem Behav 43:1201–1208

    Google Scholar 

  • Callado LF, Hopwood SE, Hancock PJ, Stamford JA (2000) Effects of dizocilpine (MK 801) on noradrenaline, serotonin and dopamine release and uptake. Neuroreport 11:173–176

    CAS  PubMed  Google Scholar 

  • Curzon P, Decker MW (1998) Effects of phencyclidine (PCP) and (+)MK-801 on sensorimotor gating in CD-1 mice. Prog Neuropsychopharmacol Biol Psychiatry 22:129–146

    Google Scholar 

  • Deutsch SI, Rosse RB, Schwartz BL, Fay-McCarthy M, Rosenberg PB, Fearing K (1997) Methylene blue adjuvant therapy of schizophrenia. Clin Neuropharmacol 20:357–363

    Google Scholar 

  • Doyle CA, Slater P (1997) Localization of neuronal and endothelial nitric oxide synthase isoforms in human hippocampus. Neuroscience 76:387–395

    Google Scholar 

  • Gould TJ, Bizily SP, Tokarczyk J, Kelly MP, Siegel SJ, Kanes SJ, Abel T (2004) Sensorimotor gating deficits in transgenic mice expressing a constitutively active form of Gs alpha. Neuropsychopharmacology 29:494–501

    CAS  PubMed  Google Scholar 

  • Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174:151–162

    CAS  Google Scholar 

  • Hashimoto T, Kuriyama K (1997) In vivo evidence that GABA(B) receptors are negatively coupled to adenylate cyclase in rat striatum. J Neurochem 69:365–370

    CAS  PubMed  Google Scholar 

  • Huang PL, Lo EH (1998) Genetic analysis of NOS isoforms using nNOS and eNOS knockout animals. Prog Brain Res 118:13–25

    CAS  PubMed  Google Scholar 

  • Izquierdo I (1975) The hippocampus and learning. Prog Neurobiol 5:37–75

    CAS  PubMed  Google Scholar 

  • Jackson DM, Johansson C, Lindgren LM, Bengtsson A (1994) Dopamine receptor antagonists block amphetamine and phencyclidine-induced motor stimulation in rats. Pharmacol Biochem Behav 48:465–471

    Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326

    CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  • Johansson C, Jackson DM, Svensson L (1994) The atypical antipsychotic, remoxipride, blocks phencyclidine-induced disruption of prepulse inhibition in the rat. Psychopharmacology (Berl) 116:437–442

    Google Scholar 

  • Johansson C, Jackson DM, Svensson L (1997) Nitric oxide synthase inhibition blocks phencyclidine-induced behavioural effects on prepulse inhibition and locomotor activity in the rat. Psychopharmacology (Berl) 131:167–173

    Google Scholar 

  • Johansson C, Magnusson O, Deveney AM, Jackson DM, Zhang J, Engel JA, Svensson L (1998) The nitric oxide synthase inhibitor, l-NAME, blocks certain phencyclidine-induced but not amphetamine-induced effects on behaviour and brain biochemistry in the rat. Prog Neuropsychopharmacol Biol Psychiatry 22:1341–1360

    Google Scholar 

  • Johansson C, Deveney AM, Reif D, Jackson DM (1999) The neuronal selective nitric oxide inhibitor AR-R 17477, blocks some effects of phencyclidine, while having no observable behavioural effects when given alone. Pharmacol Toxicol 84:226–233

    CAS  PubMed  Google Scholar 

  • Kapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol Psychiatry 7:837–844

    CAS  PubMed  Google Scholar 

  • Karatinos J, Rosse RB, Deutsch SI (1995) The nitric oxide pathway: potential implications for treatment of neuropsychiatric disorders. Clin Neuropharmacol 18:482–499

    CAS  PubMed  Google Scholar 

  • Klamer D, Engel JA, Svensson L (2001) The nitric oxide synthase inhibitor, l-NAME, block phencyclidine-induced disruption of prepulse inhibition in mice. Psychopharmacology (Berl) 156:182–186

    Google Scholar 

  • Klamer D, Engel JA, Svensson L (2004) Phencyclidine-induced behaviour in mice prevented by methylene blue. Basic Clin Pharmacol Toxicol 94:65–72

    CAS  PubMed  Google Scholar 

  • Klamer D, Engel JA, Svensson L (2004) The neuronal selective nitric oxidesynthase inhibitor, Nomega-propyl-l-arginine, blocks the effects ofphencyclidine on prepulse inhibition and locomotor activity in mice. Eur J Pharmacol 503:103–107

    Article  Google Scholar 

  • Klamer D, Pålsson E, Revesz A, Engel JA, Svensson L (2004) Habituation of acoustic startle is disrupted by psychotomimetic drugs: differential dependence on dopaminergic and nitric oxide modulatory mechanisms. Psychopharmacology 176:440–450

    Article  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    Article  CAS  PubMed  Google Scholar 

  • Kumari V, Soni W, Sharma T (1999) Normalization of information processing deficits in schizophrenia with clozapine. Am J Psychiatry 156:1046–1051

    CAS  PubMed  Google Scholar 

  • Leumann L, Feldon J, Vollenweider FX, Ludewig K (2002) Effects of typical and atypical antipsychotics on prepulse inhibition and latent inhibition in chronic schizophrenia. Biol Psychiatry 52:729–739

    Article  CAS  PubMed  Google Scholar 

  • de Lima TC, Davis M (1995) Involvement of cyclic AMP at the level of the nucleus reticularis pontis caudalis in the acoustic startle response. Brain Res 700:59–69

    PubMed  Google Scholar 

  • Linn GS, Javitt DC (2001) Phencyclidine (PCP)-induced deficits of prepulse inhibition in monkeys. Neuroreport 12:117–120

    Google Scholar 

  • Linn GS, Negi SS, Gerum SV, Javitt DC (2003) Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys. Psychopharmacology (Berl) 169:234–239

    Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23:223–239

    CAS  PubMed  Google Scholar 

  • Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR (1995) Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl) 122:35–43

    CAS  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb LS, Kelly R (1959) Study of a new schizophrenomimetic drug-sernyl. Arch Neurol Psychiatry 81:363–369

    CAS  Google Scholar 

  • Ludewig K, Geyer MA, Vollenweider FX (2003) Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biol Psychiatry 54:121–128

    Article  PubMed  Google Scholar 

  • Mansbach RS, Geyer MA (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2:299–308

    CAS  PubMed  Google Scholar 

  • Muly C (2002) Signal transduction abnormalities in schizophrenia: the cAMP system. Psychopharmacol Bull 36:92–105

    Google Scholar 

  • Nilsson M, Waters S, Waters N, Carlsson A, Carlsson ML (2001) A behavioural pattern analysis of hypoglutamatergic mice—effects of four different antipsychotic agents. J Neural Transm 108:1181–1196

    CAS  PubMed  Google Scholar 

  • Nomikos GG, Gruber S, Svensson TH, Mathe AA (2000) Effects of acute and chronic electroconvulsive stimuli on cAMP and cGMP efflux in the rat striatum and hippocampus. Eur Neuropsychopharmacol 10:495–500

    CAS  PubMed  Google Scholar 

  • Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatry Res 33:523–533

    CAS  Google Scholar 

  • Santiago M, Westerink BH (1990) Characterization of the in vivo release of dopamine as recorded by different types of intracerebral microdialysis probes. Naunyn Schmiedebergs Arch Pharmacol 342:407–414

    CAS  PubMed  Google Scholar 

  • Schuman EM, Meffert MK, Schulman H, Madison DV (1994) An ADP-ribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc Natl Acad Sci U S A 91:11958–11962

    CAS  PubMed  Google Scholar 

  • Stone EA, John SM (1990) In vivo measurement of extracellular cyclic AMP in the brain: use in studies of beta-adrenoceptor function in nonanesthetized rats. J Neurochem 55:1942–1949

    CAS  PubMed  Google Scholar 

  • Suddath RL, Christison GW, Torrey EF, Casanova MF, Weinberger DR (1990) Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322:789–794

    CAS  PubMed  Google Scholar 

  • Svenningsson P, Tzavara ET, Carruthers R, Rachleff I, Wattler S, Nehls M, McKinzie DL, Fienberg AA, Nomikos GG, Greengard P (2003) Diverse psychotomimetics act through a common signaling pathway. Science 302:1412–1415

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA, Koob GF (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol Psychiatry 21:23–33

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Noh HR, Ma L, Gaudet I, Munson M, Crain S, Auerbach PP (2004) The ventral hippocampal regulation of prepulse inhibition and its disruption by apomorphine in rats are not mediated via the fornix. Neuroscience 123:675–685

    CAS  PubMed  Google Scholar 

  • Tamminga CA, Thaker GK, Buchanan R, Kirkpatrick B, Alphs LD, Chase TN, Carpenter WT (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49:522–530

    CAS  PubMed  Google Scholar 

  • Taylor JR, Birnbaum S, Ubriani R, Arnsten AF (1999) Activation of cAMP-dependent protein kinase A in prefrontal cortex impairs working memory performance. J Neurosci 19:RC23

    Google Scholar 

  • Verma A, Moghaddam B (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–379

    Google Scholar 

  • Wang H, Storm DR (2003) Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system. Mol Pharmacol 63:463–468

    Google Scholar 

  • Wiley JL (1998) Nitric oxide synthase inhibitors attenuate phencyclidine-induced disruption of prepulse inhibition. Neuropsychopharmacology 19:86–94

    CAS  PubMed  Google Scholar 

  • Wiley JL, Kogut CP, Witherell JR (1999) Effects of acute and repeated dosing with PCP on locomotion in nNOS knockout mice. 29th Annual Meeting, Society for Neuroscience. Society for Neuroscience, Miami Beach, p 946

    Google Scholar 

  • Wu ZL, Thomas SA, Villacres EC, Xia Z, Simmons ML, Chavkin C, Palmiter RD, Storm DR (1995) Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Natl Acad Sci U S A 92:220–224

    CAS  PubMed  Google Scholar 

  • Yesavage JA, Freman AM (1978) Acute phencyclidine (PCP) intoxication: psychopathology and prognosis. J Clin Psychiatry 39:664–666

    CAS  PubMed  Google Scholar 

  • Zhang WN, Bast T, Feldon J (2002) Prepulse inhibition in rats with temporary inhibition/inactivation of ventral or dorsal hippocampus. Pharmacol Biochem Behav 73:929–940

    Google Scholar 

Download references

Acknowledgements

The helpful technical assistance of Gun Andersson is gratefully acknowledged. This study was supported by grants from the Swedish Medical Research Council (4247), the Theodore and Vada Stanley Foundation, Rådman och Fru Ernst Collianders Stiftelse, Magnus Bergvalls Stiftelse, Stiftelsen Clas Groschinskys Minnesfond, Göteborgs Läkaresällskap, Wilhelm och Martina Lundgrens Vetenskapsfond, Stiftelsen Bengt Dahréns fond, the Swedish Society of Medicine, Åke Wibergs Stiftelse, Adlerbertska Forskningsstiftelsen, Fredrik och Ingrid Thurings Stiftelse, Åhlén-Stiftelsen and Svenska Lundbeckstiftelsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Svensson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klamer, D., Pålsson, E., Fejgin, K. et al. Activation of a nitric-oxide-sensitive cAMP pathway with phencyclidine: elevated hippocampal cAMP levels are temporally associated with deficits in prepulse inhibition. Psychopharmacology 179, 479–488 (2005). https://doi.org/10.1007/s00213-004-2051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2051-z

Keywords

Navigation