Skip to main content

Advertisement

Log in

Leptin and post-prandial satiety: acute central leptin more potently reduces meal frequency than meal size in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Many attempts to understand ingestion have sought to clarify the control of meals. Little is known about the effects of the anorexogenic hormone leptin on meal patterning.

Objective

The present study sought to perform a dose–response analysis of the effects of acute central leptin administration on meal patterning using a validated, objective meal definition and to compare these results to those obtained with a previously used, subjective meal definition.

Methods

To validate the objective meal definition pharmacologically, the microstructural effects of the well-studied compound fenfluramine (SC 0, 1, 2, 4 mg/kg) on spontaneous nocturnal intake were determined in mature, non-deprived male Wistar rats (n=8) using a full Latin square design. The effects of intracerebroventricular leptin administration (0, 0.3, 1, 3, 6.25 μg; n=10) were also examined, and perceived meal patterns obtained from the objective and subjective definitions were compared.

Results

Fenfluramine reduced meal size and eating rate at doses that did not reduce meal frequency or duration. In contrast, comparably anorectic doses of leptin had potent post-meal satiety-like effects, reducing meal frequency and prolonging the intermeal interval without reducing average meal size, a finding opposite to that suggested by the previously used subjective meal definition. Unlike comparably and more anorectic doses of fenfluramine, leptin non-specifically reduced both prandial and non-prandial drinking.

Conclusions

Acute increases in central leptin levels may potently augment post-prandial satiety and influence body-fluid homeostasis. The results reveal unappreciated central modes of action for the ob protein which qualitatively differ from the intra-meal satiating-like effects of fenfluramine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahren B (2000) Diurnal variation in circulating leptin is dependent on gender, food intake and circulating insulin in mice. Acta Physiol Scand 169:325–331

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM (1996) Leptin enters the brain by a saturable system independent of insulin. Peptides 17:305–311

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Niehoff ML, Martin D, Farrell CL (2002) Leptin transport across the blood–brain barrier of the Koletsky rat is not mediated by a product of the leptin receptor gene. Brain Res 950:130–136

    Article  CAS  PubMed  Google Scholar 

  • Basso AM, Spina M, Rivier J, Vale W, Koob GF (1999) Corticotropin-releasing factor antagonist attenuates the “anxiogenic-like” effect in the defensive burying paradigm but not in the elevated plus-maze following chronic cocaine in rats. Psychopharmacology 145:21–30

    Article  CAS  PubMed  Google Scholar 

  • Bates SH, Myers MG (2003) The role of leptin receptor signaling in feeding and neuroendocrine function. Trends Endocrinol Metab 14:447–452

    Article  CAS  PubMed  Google Scholar 

  • Blevins JE, Knezetic J, Mackin R, Castellanos D, Reidelberger R (1996) Effects of intravenous and paraventricular nucleus injections of leptin on food intake in rats. Appetite 27:267

    Google Scholar 

  • Blundell JE, Latham CJ, Leshem MB (1976) Differences between the anorexic actions of amphetamine and fenfluramine—possible effects on hunger and satiety. J Pharm Pharmacol 28:471–477

    CAS  PubMed  Google Scholar 

  • Bui JD, Nammari DR, Buckley DL, Inglis BA, Silver XS, Mareci TH, Phillips MI (1999) In vivo dynamics and distribution of intracerebroventricularly administered gadodiamide, visualized by magnetic resonance imaging. Neuroscience 90:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Burton MJ, Cooper SJ, Popplewell DA (1981) The effect of fenfluramine on the microstructure of feeding and drinking in the rat. Br J Pharmacol 72:621–633

    CAS  PubMed  Google Scholar 

  • Campbell DT, Kenny DA (1999) A primer on regression artifacts. Guilford, New York

  • Campfield LA (1997) Metabolic and hormonal controls of food intake: highlights of the last 25 years—1972–1997. Appetite 29:135–152

    Article  CAS  PubMed  Google Scholar 

  • Castonguay TW, Upton DE, Leung PM, Stern JS (1982) Meal patterns in the genetically obese Zucker rat: a reexamination. Physiol Behav 28:911–916

    Article  CAS  PubMed  Google Scholar 

  • Castonguay TW, Kaiser LL, Stern JS (1986) Meal pattern analysis: artifacts, assumptions and implications. Brain Res Bull 17:439–443

    Article  CAS  PubMed  Google Scholar 

  • Chapelot D, Aubert R, Marmonier C, Chabert M, Louis-Sylvestre J (2000) An endocrine and metabolic definition of the intermeal interval in humans: evidence for a role of leptin on the prandial pattern through fatty acid disposal. Am J Clin Nutr 72:421–431

    CAS  PubMed  Google Scholar 

  • Chin-Chance C, Polonsky KS, Schoeller DA (2000) Twenty-four-hour leptin levels respond to cumulative short-term energy imbalance and predict subsequent intake. J Clin Endocrinol Metab 85:2685–2691

    Article  CAS  PubMed  Google Scholar 

  • Clifton PG (1987) Analysis of feeding and drinking patterns. In Toates FM, Rowland NR (eds) Feeding and drinking. Elsevier, Amsterdam, pp 19–35

  • Clifton PG (2000) Meal patterning in rodents: psychopharmacological and neuroanatomical studies. Neurosci Biobehav Rev 24:213–222

    Article  CAS  PubMed  Google Scholar 

  • Clifton PG, Barnfield AM, Philcox L (1989) A behavioural profile of fluoxetine-induced anorexia. Psychopharmacology 97:89–95

    CAS  PubMed  Google Scholar 

  • Clifton PG, Lee MD, Dourish CT (2000) Similarities in the action of Ro 60-0175, a 5-HT2C receptor agonist and d-fenfluramine on feeding patterns in the rat. Psychopharmacology 152:256–267

    Article  CAS  PubMed  Google Scholar 

  • Dallongeville J, Hecquet B, Lebel P, Edme JL, Le Fur C, Fruchart JC, Auwerx J, Romon M (1998) Short term response of circulating leptin to feeding and fasting in man: influence of circadian cycle. Int J Obes Relat Metab Disord 22:728–733

    Article  CAS  PubMed  Google Scholar 

  • Demaria-Pesce VH, Nicolaidis S (1998) Mathematical determination of feeding patterns and its consequence on correlational studies. Physiol Behav 65:157–170

    Article  CAS  PubMed  Google Scholar 

  • Eckel LA, Langhans W, Kahler A, Campfield LA, Smith FJ, Geary N (1998) Chronic administration of OB protein decreases food intake by selectively reducing meal size in female rats. Am J Physiol 275:R186–R193

    CAS  PubMed  Google Scholar 

  • Emond M, Schwartz GJ, Ladenheim EE, Moran TH (1999) Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol 276:R1545–R1549

    CAS  PubMed  Google Scholar 

  • Emond M, Ladenheim EE, Schwartz GJ, Moran TH (2001) Leptin amplifies the feeding inhibition and neural activation arising from a gastric nutrient preload. Physiol Behav 72:123–128

    Article  CAS  PubMed  Google Scholar 

  • Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O’Rahilly S (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341:879–884

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimons TJ, Le Magnen J (1969) Eating as a regulatory control of drinking in the rat. J Comp Physiol Psychol 67:273–283

    CAS  PubMed  Google Scholar 

  • Fletcher PJ, Burton MJ (1986) Microstructural analysis of the anorectic action of peripherally administered 5-HT. Pharmacol Biochem Behav 24:1133–1136

    Article  CAS  PubMed  Google Scholar 

  • Flynn MC, Scott TR, Pritchard TC, Plata-Salaman CR (1998) Mode of action of OB protein (leptin) on feeding. Am J Physiol 275:R174–R179

    CAS  PubMed  Google Scholar 

  • Foltin RW, Haney M, Comer SD, Fischman MW (1996) Effect of fenfluramine on food intake, mood, and performance of humans living in a residential laboratory. Physiol Behav 59:295–305

    Article  CAS  PubMed  Google Scholar 

  • Glendinning JI, Smith JC (1994) Consistency of meal patterns in laboratory rats. Physiol Behav 56:7–16

    Article  CAS  PubMed  Google Scholar 

  • Grignaschi G, Neill JC, Petrini A, Garattini S, Samanin R (1992) Feeding pattern studies suggest that d-fenfluramine and sertraline specifically enhance the state of satiety in rats. Eur J Pharmacol 211:137–142

    Article  CAS  PubMed  Google Scholar 

  • Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG (2002) Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143:239–246

    Article  CAS  PubMed  Google Scholar 

  • Grinker JA, Drewnowski A, Enns M, Kissileff H (1980) Effects of d-amphetamine and fenfluramine on feeding pattens and activity of obese and lean Zucker rats. Pharmacol Biochem Behav 12:265–275

    Article  CAS  PubMed  Google Scholar 

  • Guha PK, Villarreal D, Reams GP, Freeman RH (2003) Role of leptin in the regulation of body fluid volume and pressures. Am J Ther 10:211–218

    Article  PubMed  Google Scholar 

  • Halford JC, Blundell JE (2000) Separate systems for serotonin and leptin in appetite control. Ann Med 32:222–232

    CAS  PubMed  Google Scholar 

  • Halford JC, Wanninayake SC, Blundell JE (1998) Behavioral satiety sequence (BSS) for the diagnosis of drug action on food intake. Pharmacol Biochem Behav 61:159–168

    Article  CAS  PubMed  Google Scholar 

  • Harvey J, Ashford ML (2003) Leptin in the CNS: much more than a satiety signal. Neuropharmacology 44:845–854

    Article  CAS  PubMed  Google Scholar 

  • Heini AF, Lara-Castro C, Kirk KA, Considine RV, Caro JF, Weinsier RL (1998) Association of leptin and hunger-satiety ratings in obese women. Int J Obes Relat Metab Disord 22:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Hileman SM, Pierroz DD, Masuzaki H, Bjorbaek C, El Haschimi K, Banks WA, Flier JS (2002) Characterizaton of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity. Endocrinology 143:775–783

    Article  CAS  PubMed  Google Scholar 

  • Hulsey MG, Lu H, Wang T, Martin RJ, Baile CA (1998) Intracerebroventricular (ICV) administration of mouse leptin in rats: behavioral specificity and effects on meal patterns. Physiol Behav 65:445–455

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Valdez GR, Reyes TM, Reinhardt LE, Tabarin A, Rivier J, Vale WW, Sawchenko PE, Koob GF, Zorrilla EP (2003) Human urocortin II, a selective agonist for the type 2 corticotropin-releasing factor receptor, decreases feeding and drinking in the rat. J Pharmacol Exp Ther 305:385–393

    Article  CAS  PubMed  Google Scholar 

  • Johnson RF, Johnson AK (1997) The interaction of meal-related, rhythmic and homeostatic mechanisms and the generation of thirst and drinking. Brazil J Med Biol Res 30:487–491

    CAS  Google Scholar 

  • Kahler A, Geary N, Eckel LA, Campfield LA, Smith FJ, Langhans W (1998) Chronic administration of OB protein decreases food intake by selectively reducing meal size in male rats. Am J Physiol 275:R180–R185

    CAS  PubMed  Google Scholar 

  • Kastin AJ, Akerstrom V, Pan W (2001) Validity of multiple-time regression analysis in measurement of tritiated and iodinated leptin crossing the blood-brain barrier: meaningful controls. Peptides 22:2127–2136

    Article  CAS  PubMed  Google Scholar 

  • Kastin AJ, Pan W, Akerstrom V, Hackler L, Wang C, Kotz CM (2002) Novel peptide-peptide cooperation may transform feeding behavior. Peptides 23:2189–2196

    Article  CAS  PubMed  Google Scholar 

  • Keim NL, Stern JS, Havel PJ (1998) Relation between circulating leptin concentrations and appetite during a prolonged, moderate energy deficit in women. Am J Clin Nutr 68:794–801

    CAS  PubMed  Google Scholar 

  • Kissileff HR (1970) Free feeding in normal and “recovered lateral” rats monitored by a pellet-detecting eatometer. Physiol Behav 5:163–173

    Article  CAS  PubMed  Google Scholar 

  • Kraly FS (1983) Histamine plays a part in induction of drinking by food intake. Nature 302:65–66

    CAS  PubMed  Google Scholar 

  • Kraly FS, Corneilson R (1990) Angiotensin II mediates drinking elicited by eating in the rat. Am J Physiol 258:R436–R442

    CAS  PubMed  Google Scholar 

  • Kraly FS, Smith GP, Carty WJ (1978) Abdominal vagotomy disrupts food-related drinking in the rat. J Comp Physiol Psychol 92:196–203

    CAS  PubMed  Google Scholar 

  • Le Magnen J, Devos M (1980) Parameters of the meal pattern in rats: their assessment and physiological significance. Neurosci Biobehav Rev 4(Suppl 1):1–11

    Article  Google Scholar 

  • Maness LM, Kastin AJ, Farrell CL, Banks WA (1998) Fate of leptin after intracerebroventricular injection into the mouse brain. Endocrinology 139:4556–4562

    Article  CAS  PubMed  Google Scholar 

  • Marie M, Findlay PA, Thomas L, Adam CL (2001) Daily patterns of plasma leptin in sheep: effects of photoperiod and food intake. J Endocrinol 170:277–286

    CAS  PubMed  Google Scholar 

  • Martinez V, Barrachina MD, Wang L, Taché Y (1999) Intracerebroventricular leptin inhibits gastric emptying of a solid nutrient meal in rats. Neuroreport 10:3217–3221

    CAS  PubMed  Google Scholar 

  • Matson CA, Ritter RC (1999) Long-term CCK-leptin synergy suggests a role for CCK in the regulation of body weight. Am J Physiol 276:R1038–R1045

    CAS  PubMed  Google Scholar 

  • Matson CA, Reid DF, Cannon TA, Ritter RC (2000) Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol Regul Integr Comp Physiol 278:R882–R890

    CAS  PubMed  Google Scholar 

  • McGuirk J, Goodall E, Silverstone T, Willner P (1991) Differential effects of d-fenfluramine, l-fenfluramine and d-amphetamine on the microstructure of human eating behaviour. Behav Pharmacol 2:113–119

    PubMed  Google Scholar 

  • Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O’Rahilly S (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908

    Article  CAS  PubMed  Google Scholar 

  • Morgan CA, Emmans GC, Tolkamp BJ, Kyriazakis I (2000) Analysis of the feeding behavior of pigs using different models. Physiol Behav 68:395–403

    Article  CAS  PubMed  Google Scholar 

  • Panksepp J (1973) Reanalysis of feeding patterns in the rat. J Comp Physiol Psychol 82:78–94

    CAS  PubMed  Google Scholar 

  • Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A stereotaxic atlas of the rat brain. Plenum, New York

  • Phillips RJ, Powley TL (1996) Gastric volume rather than nutrient content inhibits food intake. Am J Physiol 271:R766–R769

    CAS  PubMed  Google Scholar 

  • Pico C, Oliver P, Sanchez J, Palou A (2003) Gastric leptin: a putative role in the short-term regulation of food intake. Br J Nutr 90:735–741

    Article  CAS  PubMed  Google Scholar 

  • Ritter RC, Covasa M, Matson CA (1999) Cholecystokinin: proofs and prospects for involvement in control of food intake and body weight. Neuropeptides 33:387–399

    Article  CAS  PubMed  Google Scholar 

  • Rivest S (2002) Does circulating leptin have the ability to cross the blood–brain barrier and target neurons directly? Endocrinology 143:3211–3213

    Article  CAS  PubMed  Google Scholar 

  • Rogers PJ, Blundell JE (1979) Effect of anorexic drugs on food intake and the micro-structure of eating in human subjects. Psychopharmacology 66:159–165

    CAS  PubMed  Google Scholar 

  • Rossi R, Scharrer E (1992) Circadian patterns of drinking and eating in pygmy goats. Physiol Behav 51:895–897

    Article  CAS  PubMed  Google Scholar 

  • Saladin R, De Vos P, Guerre-Millo M, Leturque A, Girard J, Staels B, Auwerx J (1995) Transient increase in obese gene expression after food intake or insulin administration. Nature 377:527–529

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr (1996) Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 2:589–593

    CAS  PubMed  Google Scholar 

  • Sinha MK, Caro JF (1998) Clinical aspects of leptin. Vitam Horm 54:1–30

    CAS  PubMed  Google Scholar 

  • Takamata A, Seo Y, Ogino T, Tanaka K, Fujiki N, Morita H, Murakami M (2001) Effects of pCO(2) on the CSF turnover rate in T(1)-weighted magnetic resonance imaging. Jpn J Physiol 51:555–562

    CAS  PubMed  Google Scholar 

  • Tolkamp BJ, Schweitzer DP, Kyriazakis I (2000) The biologically relevant unit for the analysis of short-term feeding behavior of dairy cows. J Dairy Sci 83:2057–2068

    CAS  PubMed  Google Scholar 

  • Vickers SP, Clifton PG, Dourish CT, Tecott LH (1999) Reduced satiating effect of d-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology 143:309–314

    Article  CAS  PubMed  Google Scholar 

  • Vickers SP, Dourish CT, Kennett GA (2001) Evidence that hypophagia induced by d-fenfluramine and d-norfenfluramine in the rat is mediated by 5-HT2C receptors. Neuropharmacology 41:200–209

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Barachina MD, Martinez V, Wei JY, Tache Y (2000) Synergistic interaction between CCK and leptin to regulate food intake. Regul Pept 92:79–85

    Article  CAS  PubMed  Google Scholar 

  • Westerterp-Plantenga MS, Saris WH, Hukshorn CJ, Campfield LA (2001) Effects of weekly administration of pegylated recombinant human OB protein on appetite profile and energy metabolism in obese men. Am J Clin Nutr 74:426–434

    CAS  PubMed  Google Scholar 

  • Woods SC, Schwartz MW, Baskin DG, Seeley RJ (2000) Food intake and the regulation of body weight. Annu Rev Psychol 51:255–277

    Article  CAS  PubMed  Google Scholar 

  • Zigman JM, Elmquist JK (2003) Minireview: from anorexia to obesity–the yin and yang of body weight control. Endocrinology 144:3749–3756

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by DK26741 and DK64871 from the National Institute of Diabetes and Digestive and Kidney Diseases (E.P.Z., G.F.K.). A.T. was supported by grants from the Fondation pour la Recherche Médicale and the Action Thématique Concertée “Nutrition” from INSERM. G.R.V. was supported by AA05563, an Individual National Research Service Award from the National Institute on Alcohol Abuse and Alcoholism. The authors thank Robert Lintz, Carmen Carrillo and Lindsay Reinhardt for technical contributions, and Mike Arends for editorial assistance. This is publication number 16298-NP from The Scripps Research Institute. The experiments comply with the current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric P. Zorrilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorrilla, E.P., Inoue, K., Valdez, G.R. et al. Leptin and post-prandial satiety: acute central leptin more potently reduces meal frequency than meal size in the rat. Psychopharmacology 177, 324–335 (2005). https://doi.org/10.1007/s00213-004-1952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1952-1

Keywords

Navigation