Skip to main content
Log in

Discrete maximal regularity and the finite element method for parabolic equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Maximal regularity is a fundamental concept in the theory of partial differential equations. In this paper, we establish a fully discrete version of maximal regularity for parabolic equations on a polygonal or polyhedral domain \(\varOmega \). We derive various stability results in the discrete \(L^p(0,T;L^q(\varOmega ))\) norms for the finite element approximation with the mass-lumping to the linear heat equation. Our method of analysis is an operator theoretical one using pure imaginary powers of operators and might be a discrete version of the result of Dore and Venni. As an application, optimal order error estimates in those norms are proved. Furthermore, we study the finite element approximation for semilinear heat equations with locally Lipschitz continuous nonlinear terms and offer a new method for deriving optimal order error estimates. Some interesting auxiliary results including discrete Gagliardo–Nirenberg and Sobolev inequalities are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  2. Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. I: Abstract Linear Theory. Birkhäuser Boston, Inc., Boston (1995)

    Book  MATH  Google Scholar 

  3. Amann, H.: Quasilinear parabolic problems via maximal regularity. Adv. Differ. Equ. 10(10), 1081–1110 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Ashyralyev, A., Piskarev, S., Weis, L.: On well-posedness of difference schemes for abstract parabolic equations in \(L^p([0, T];E)\) spaces. Numer. Funct. Anal. Optim. 23(7–8), 669–693 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ashyralyev, A., Sobolevskiĭ, P.E.: Well-Posedness of Parabolic Difference Equations. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  6. Bank, R.E., Yserentant, H.: On the \(H^1\)-stability of the \(L_2\)-projection onto finite element spaces. Numer. Math. 126(2), 361–381 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berger, M., Kohn, R.V.: A rescaling algorithm for the numerical calculation of blowing-up solutions. Commun. Pure Appl. Math. 41(6), 841–863 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blunck, S.: Maximal regularity of discrete and continuous time evolution equations. Stud. Math. 146(2), 157–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the \(L^2\) projection in \(H^1(\Omega )\). Math. Comp. 71(237), 147–156 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, third edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  11. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  12. Coifman, R.R., Weiss, G.: Transference Methods in Analysis. American Mathematical Society, Providence (1976)

    MATH  Google Scholar 

  13. Crouzeix, M., Thomée, V.: Resolvent estimates in \(l_p\) for discrete Laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes. Comput. Methods Appl. Math. 1(1), 3–17 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Demlow, A., Leykekhman, D., Schatz, A.H., Wahlbin, L.B.: Best approximation property in the \(W^{1}_{\infty }\) norm for finite element methods on graded meshes. Math. Comp. 81(278), 743–764 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Denk, R., Hieber, M., Prüss, J.: \(\cal{R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Dore, G.: \(L^p\) regularity for abstract differential equations. In: Hikosaburo Komatsu (ed.) Functional Analysis and Related Topics, 1991 (Kyoto), Volume 1540 of Lecture Notes in Mathematics, pp. 25–38. Springer, Berlin (1993)

  17. Dore, G., Venni, A.: On the closedness of the sum of two closed operators. Math. Z. 196(2), 189–201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duong, X.T.: \(H_\infty \) functional calculus of second order elliptic partial differential operators on \(L^p\) spaces. In: Proceedings of the Centre for Mathematics and its Applications Australian National University on Miniconference on Operators in Analysis (Sydney, 1989), vol. 24, pp. 91–102. Australian National University, Canberra (1990)

  19. Eriksson, K., Johnson, C., Larsson, S.: Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35(4), 1315–1325 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Farwig, R., Kozono, H., Sohr, H.: An \(L^q\)-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fujii, H.: Some remarks on finite element analysis of time-dependent field problems. In: Proceedings of the 1973 Tokyo Seminar on Finite Element Analysis, Theory and Practice in Finite Element Structural Analysis, pp. 91–106. University of Tokyo Press, Tokyo (1973)

  22. Fujita, H., Saito, N., Suzuki, T.: Operator Theory and Numerical Methods. North-Holland Publishing Co., Amsterdam (2001)

    MATH  Google Scholar 

  23. Gavrilyuk, I.P., Makarov, V.L.: Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces. SIAM J. Numer. Anal. 43(5), 2144–2171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Geissert, M.: Discrete maximal \(L_p\) regularity for finite element operators. SIAM J. Numer. Anal. 44(2), 677–698 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Geissert, M.: Applications of discrete maximal \(L_p\) regularity for finite element operators. Numer. Math. 108(1), 121–149 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman (Advanced Publishing Program), Boston (1985)

    MATH  Google Scholar 

  27. Hansbo, A.: Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems. BIT 42(2), 351–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kemmochi, T.: Discrete maximal regularity for abstract Cauchy problems. Stud. Math. 234(3), 241–263 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, New York (2003)

    MATH  Google Scholar 

  30. Kovács, B., Li, B., Lubich, C.: A-stable time discretizations preserve maximal parabolic regularity. SIAM J. Numer. Anal. 54(6), 3600–3624 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kunstmann, P.C., Weis, L.: Maximal \(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus. In: Functional Analytic Methods for Evolution Equations, Volume 1855 of Lecture Notes in Mathematics, pp. 65–311. Springer, Berlin (2004)

  32. Leykekhman, D., Vexler, B.: Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135(3), 923–952 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, B.: Maximum-norm stability and maximal \(L^p\) regularity of FEMs for parabolic equations with Lipschitz continuous coefficients. Numer. Math. 131(3), 489–516 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, B., Sun, W.: Maximal \(L^p\) analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. Math. Comp. 86(305), 1071–1102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, B., Sun, W.: Maximal regularity of fully discrete finite element solutions of parabolic equations. SIAM J. Numer. Anal. 55(2), 521–542 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lunardi, A.: Interpolation Theory, second edn. Edizioni della Normale, Pisa (2009)

    MATH  Google Scholar 

  37. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  38. Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27(2), 332–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Saito, N.: Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis. Commun. Pure Appl. Anal. 11(1), 339–364 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schatz, A.H., Thomée, V., Wahlbin, L.B.: Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations. Commun. Pure Appl. Math. 51(11–12), 1349–1385 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, second edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  42. Thomée, V., Wahlbin, L.B.: Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions. Numer. Math. 87(2), 373–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Thomée, V., Wahlbin, L.B.: On the existence of maximum principles in parabolic finite element equations. Math. Comp. 77(261), 11–19 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319(4), 735–758 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, G., Saito, N.: Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis. Numer. Math. 135(1), 265–311 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Program for Leading Graduate Schools, MEXT, Japan and JSPS KAKENHI Grant No. 15J07471, Japan. The second author was supported by JST CREST Grant No. JPMJCR15D1, Japan and by JSPS KAKENHI Grant Nos. 15H03635 and 15K13454, Japan. The authors would like to thank the anonymous reviewer for valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Kemmochi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemmochi, T., Saito, N. Discrete maximal regularity and the finite element method for parabolic equations. Numer. Math. 138, 905–937 (2018). https://doi.org/10.1007/s00211-017-0929-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0929-z

Mathematics Subject Classification

Navigation