Skip to main content
Log in

Discretization of functionals involving the Monge–Ampère operator

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Gradient flows in the Wasserstein space have become a powerful tool in the analysis of diffusion equations, following the seminal work of Jordan, Kinderlehrer and Otto (JKO). The numerical applications of this formulation have been limited by the difficulty to compute the Wasserstein distance in dimension \(\geqslant \)2. One step of the JKO scheme is equivalent to a variational problem on the space of convex functions, which involves the Monge–Ampère operator. Convexity constraints are notably difficult to handle numerically, but in our setting the internal energy plays the role of a barrier for these constraints. This enables us to introduce a consistent discretization, which inherits convexity properties of the continuous variational problem. We show the effectiveness of our approach on nonlinear diffusion and crowd-motion models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agueh, M.: Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Ph.D. thesis, Georgia Institute of Technology, USA (2002)

  2. Agueh, M.: Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory. Adv. Differ. Equ. 10(3), 309–360 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Agueh, M., Bowles, M.: One-dimensional numerical algorithms for gradient flows in the p-Wasserstein spaces. Acta Appl. Math. 125(1), 121–134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows: in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich (2005)

  5. Blanchet, A., Calvez, V., Carrillo, J.A.: Convergence of the mass-transport steepest descent scheme for the subcritical Patlak–Keller–Segel model. SIAM J. Numer. Anal. 46(2), 691–721 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blanchet, A., Carlier, G.: Optimal transport and Cournot–Nash equilibria. arXiv:1206.6571 (2012, arXiv preprint)

  7. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burger, M., Carrillo, J.A., Wolfram, M.T., et al.: A mixed finite element method for nonlinear diffusion equations. Kinet. Related Models 3(1), 59–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L.A.: Boundary regularity of maps with convex potentials. Commun. Pure Appl. Math. 45(9), 1141–1151 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carlier, G., Lachand-Robert, T., Maury, B.: A numerical approach to variational problems subject to convexity constraint. Numer. Math. 88(2), 299–318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carrillo, J.A., Moll, J.S.: Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput. 31(6), 4305–4329 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. CGAL. Computational Geometry Algorithms Library. http://www.cgal.org

  13. Choné, P., Le Meur, H.V.: Non-convergence result for conformal approximation of variational problems subject to a convexity constraint. Numer. Funct. Anal. Optim. 5–6(22), 529–547 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ekeland, I., Moreno-Bromberg, S.: An algorithm for computing solutions of variational problems with global convexity constraints. Numer. Math. 115(1), 45–69 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutiérrez, C.E.: The Monge–Ampère Equation, vol. 44. Birkhauser, Basel (2001)

    MATH  Google Scholar 

  16. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kinderlehrer, D., Walkington, N.J.: Approximation of parabolic equations using the Wasserstein metric. ESAIM Math. Model. Numer. Anal. 33(04), 837–852 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lachand-Robert, T., Oudet, É.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16(2), 368–379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maury, B., Roudneff-Chupin, A., Santambrogio, F.: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mérigot, Q., Oudet, E.: Handling convexity-like constraints in variational problems. SIAM J. Numer. Anal 52(5), 2466–2487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mirebeau, J.M.: Adaptive, anisotropic and hierarchical cones of discrete convex functions. arXiv:1402.1561 (2014, arXiv preprint)

  23. Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge–Ampère equation and functions of the eigenvalues of the hessian. Discrete Contin. Dyn. Syst. Ser. B 10(1), 221–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oberman, A.M.: A numerical method for variational problems with convexity constraints. SIAM J. Sci. Comput. 35(1), A378–A396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oliker, V., Prussner, L.: On the numerical solution of the equation \(\frac{\partial ^2z}{\partial x^2} + \frac{\partial ^2 z}{\partial y^2} - \left(\frac{\partial ^2 z}{\partial x\partial y}\right)^2=f\). Numer. Math. 54(3), 271–293 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, vol. 44. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  28. Trudinger, N.S., Wang, X.J.: The affine plateau problem. J. Am. Math. Soc. 18(2), 253–289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Visintin, A.: Strong convergence results related to strict convexity. Commum. Partial Differ. Equ. 9(5), 439–466 (1984). doi:10.1080/03605308408820337

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, B.: The first boundary value problem for Abreu’s equation. Int. Math. Res. Not. IMRN 7, 1439–1484 (2012)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the French ANR, through the projects ISOTACE (ANR-12-MONU-0013), OPTIFORM (ANR-12-BS01-0007) and TOMMI (ANR-11-BSO1-014-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Mérigot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamou, JD., Carlier, G., Mérigot, Q. et al. Discretization of functionals involving the Monge–Ampère operator. Numer. Math. 134, 611–636 (2016). https://doi.org/10.1007/s00211-015-0781-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0781-y

Mathematics Subject Classification

Navigation